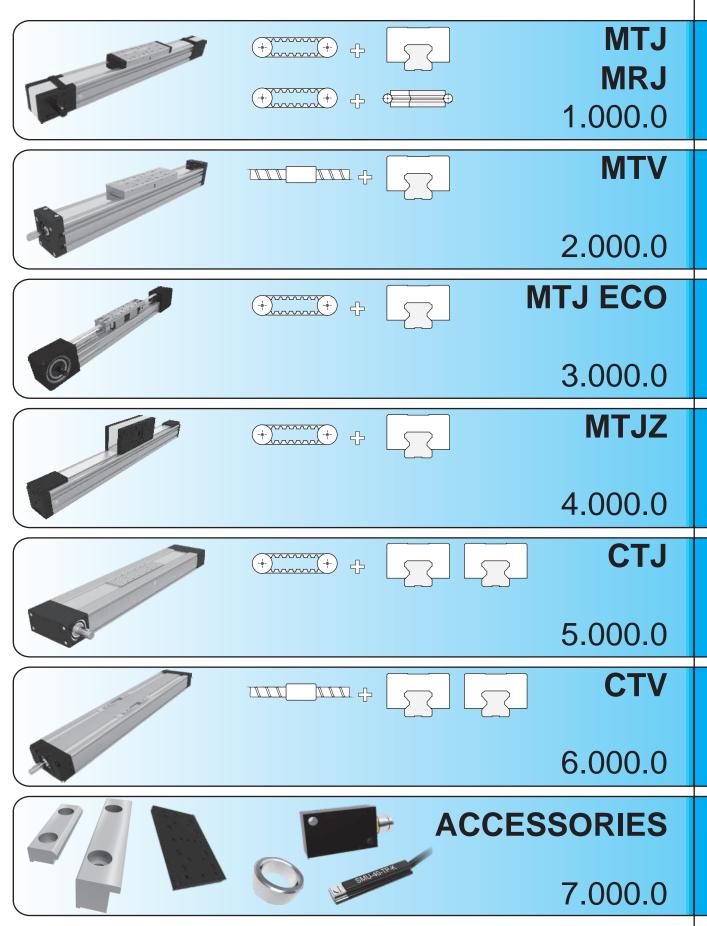

UNMOTION

LINEAR UNITS

Our company was established in 1990 and, since then, it is privately owned. After 7 years of experience in metal processing as a contractor, the company Hypex (Unimotion) was created and operated in the following areas:


Special purpose machinery manufacture with its own development, trade and assembly in the area of industrial automation. Due to many years of engineering and substantial engagement in individual problem solving processes, extensive knowledge and experience in the development and manufacture of linear and handling systems were gained. Today we produce mechanical linear units, compact linear units, multi-axis systems as well as customised solutions for high dynamic demands. Our company's premises, which cover an area of 4500m², offer room for our 40 employees. Production, construction, administration and warehouse; all this can be found under one roof.

Our modern machinery with CNC machining centres and CNC automatic lathes enables high-precision manufacture and really high in-house production depth. For example, we ourselves manufacture shaft drives with tooth washers and our screw ends. This is why, quality, reliability, a good price/performance ratio and short delivery times are harmonised to perfection. Thus, in the production of our standard linear units as well as individual and complex special linear units, we can guarantee high capacity, flexibility and precision.

It goes without saying that our company is certified in accordance with DIN ISO 9001:2008. At the moment, we export our products in more than 23 countries. Inspired by our customers' demands, Hypex (Unimotion) constantly develops new products and system solutions. So you are welcome to contact us. We look forward to meet you and work on your special project!

LINEAR UNITS Contents

V 7.0

Notes	LINEAR UNITS

LINEAR UNITS MTJ and MRJ Series

CHARACTERISTICS

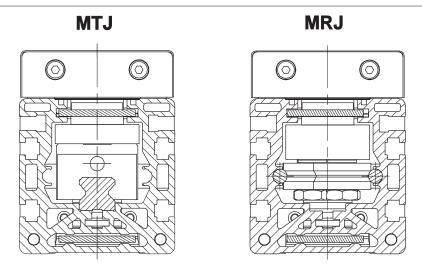
MTJ and **MRJ** Linear Units with toothed belt drive and compact dimensions provide high performance features such as, high speed, good accuracy and repeatability.

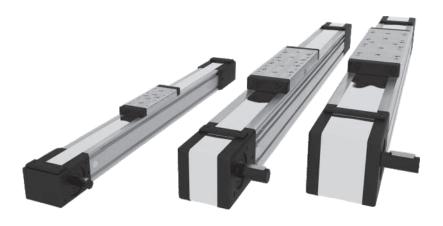
They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

For very high speeds, up to 10m/s, the Track Rollers (journal Bearings) of the type MRJ are particularly suitable.

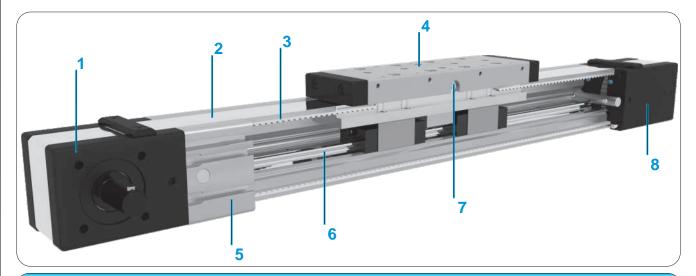

In the Linear Units MTJ and MRJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.


The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations. As optional, a corrosion-resistant protection strip is available.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

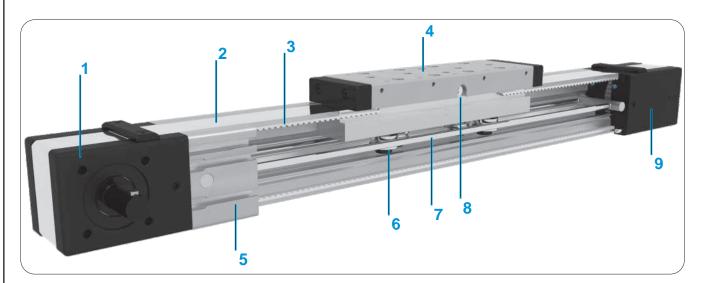
Different carriage lengths with central lubrication port, allow easy re-lubrication of the Linear Unit and allow the possibility to attach additional accessories on the side.

For the Linear Units MTJ and MRJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



The aluminium profiles are manufactured according to the medium EN 12020-2 standard /

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm


STRUCTURAL DESIGN

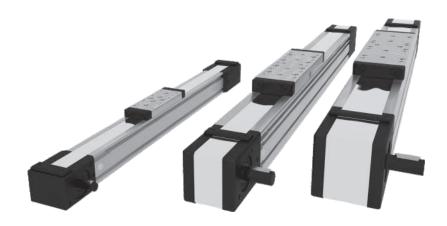
MTJ Series

- 1 Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- 3 AT polyurethane toothed belt with steel tension cords.
- 4 Carriage; with built in Magnets
- 5 Aluminium profile-Hard anodized
- 6 Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 Tension End with integrated belt tensioning system

MRJ Series

- 1 Drive block with pulley
- 2 Corrosion-resistant protection strip (available also without protection strip)
- **3 -** AT polyurethane toothed belt with steel tension cords.
- 4 Carriage; with build in Magnets
- **5 -** Aluminium profile-Hard anodized
- 6 Track Roller (journal Bearing)
- 7 Two hardened steel Round guide (58/60 HRC)
- 8 Central lubrication port; both sides
- 9 Tension End with integrated belt tensioning system

LINEAR UNITS MTJ and MRJ Series


HOW TO ORDER

	MTJ - 65	- 1000 -	L - 1	- R	- 1
Series: MRJ MTJ Size: 40 65 80 110 Absolute stroke (mm): (Absolute stroke = Effective stroke + 2 x Safety) Carriage Version: S: Short (only for MTJ series) L: Long Without: MRJ 40, MTJ 40	/ stroke)				
Type of drive pulley: 0: Pulley with through hole 1: Pulley with journal (with Keyway) 10: Pulley with journal (without Keyway) 2: Pulley with journal on both sides (with Key 20: Pulley with journal on both sides (without key 3: Without drive unit Drive journal position: L: Journal on left side R: Journal on right side Leave blank: For type of drive pulley 0, 2, 20	Keyway)				

0 : In profile groove guided Polyurethane toothed belt

1 : Corrosion-resistant protection strip

Protection cover:

TECHNICAL DATA

General technical data for MTJ series

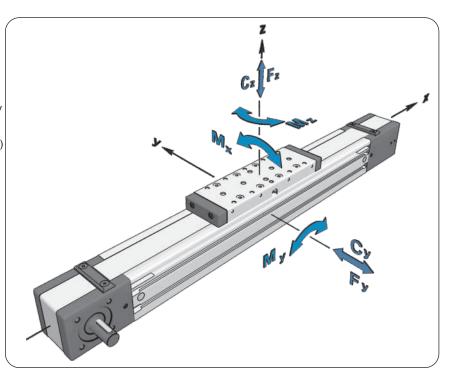
Linear Unit	Carriage length	Load ca	pacity Static	Dynamic moment			Moved mass	Maximum Repeatability	* Maximum length		noment of ertia
	Lv [mm]	Dynamic C [N]	C0 [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	Lmax [mm]	ly [cm ⁴]	lz [cm ⁴]
MTJ 40	92	4610	6930	28	90	90	0,28	± 0,08	2000	9,83	11,57
MTJ 65 S	140	6840	9750	60	50	50	1,00	± 0,08	6000	59,1	73,8
MTJ 65 L	190	13690	19500	130	710	710	1,45	± 0,08	6000		
MTJ 80 S	170	15330	21700	200	140	140	1,72	± 0,08	C000	422.2	47E 0
MTJ 80 L	260	30670	43410	400	2300	2300	2,72	± 0,08	6000	132,3	175,2
MTJ 110 S	240	21850	30200	340	240	240	3,25	± 0,08	6000		620.0
MTJ 110 L	330	43700	60400	680	3390	3390	4,61	± 0,08		513,0	620,0

 $^{{}^{\}textstyle \bigstar} {}$ For lengths over the stated value in the table above please contact us

General technical data for MRJ series

Linear Unit	Carriage length	Dynamic load capacity		Dynamic moment			Moved mass	Maximum Repeatability	* Maximum length	Planar m	oment of rtia
	Lv [mm]	Cy [N]	Cz [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	Lmax [mm]	ly [cm ⁴]	Iz [cm ⁴]
MRJ 40	92	3260	1910	20	50	50	0,26	± 0,08	6000	9,83	11,57
MRJ 65 L	190	8200	4820	80	230	230	1,31	± 0,08	6000	59,1	73,8
MRJ 80 L	260	16600	9760	210	760	760	2,73	± 0,08	6000	132,3	175,2
MRJ 110 L	330	29000	17060	490	1580	1580	4,78	± 0,08	6000	513,0	620,0

^{*}For lengths over the stated value in the table above please contact us


î

Recommended values of loads

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv =5.0)

Modulus of elasticity:

E = 70000 N / mm

LINEAR UNITS MTJ and MRJ Series

TECHNICAL DATA

Drive and belt data for MRJ and MTJ series

	*		**								
Linear Unit	Maximum travel speed	Maximum drive torque	No load	torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	
		Ма	With strip	Without strip						Cspec	
	[m/s]	[Nm]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	
MRJ 40	10	3,7	0,4	0,2	99	31,51	AT 3	20	235	225000	
MTJ 40	6	0,.	0,4	0,2		. ,-					
MRJ 65 L	10		_1	0,7							
MTJ 65 S		13,1 6	13,1	1,1	0,8	165	52,52	AT 5	32	500	600000
MTJ 65 L			1,2	0,9							
MRJ 80 L	10		1,4	1,1							
MTJ 80 S	6	29,4	1,5	1,2	210	66,84	AT 5	50	880	960000	
MTJ 80 L	· ·		1,7	1,4							
MRJ 110 L	10	68,5	1,8	1,5							
MTJ 110 S		with keyway 82,6	1,8	1,5	300	95,49	AT 10	50	1730	2145000	
MTJ 110 L		6 82,6 without keyway	2	1,7							

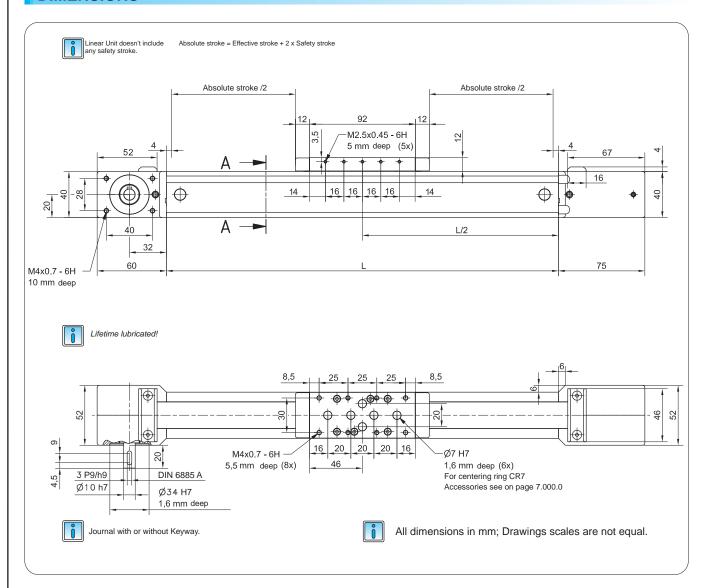
^{*}Maximum travel speed of Linear unit with the Corrosion-resistant protection strip is 1,5 m/s

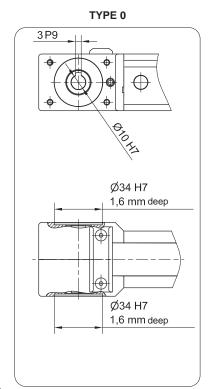
Mass and mass moment of inertia for MTJ series

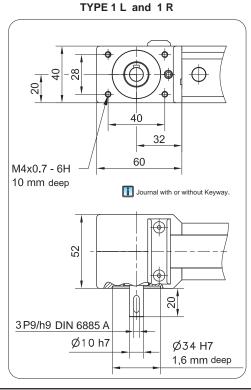
Linear Unit	Carriage length Lv [mm]	Mass of linear unit [kg]	Mass moment of inertia [10 ⁻⁵ kg·m ²]
MTJ 40	92	1,3 + 0,0024 * Stroke [mm]	9,7 + 0,003 * Stroke [mm]
MTJ 65 S	140	4 + 0,0055 * Stroke [mm]	98,4 + 0,015 * Stroke [mm]
MTJ 65 L	190	4,6 + 0,0055 * Stroke [mm]	130,1 + 0,015 * Stroke [mm]
MTJ 80 S	170	6,8 + 0,0085 * Stroke [mm]	310,6 + 0,039 * Stroke [mm]
MTJ 80 L	260	8,4 + 0,0085 * Stroke [mm]	423,3 + 0,039 * Stroke [mm]
MTJ 110 S	240	15 + 0,015 * Stroke [mm]	1065,0 + 0,137 * Stroke [mm]
MTJ 110 L	330	17,7 + 0,015 * Stroke [mm]	1381,0 + 0,137 * Stroke [mm]

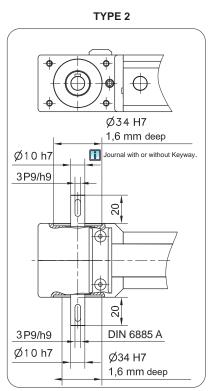
Mass and mass moment of inertia for MRJ series

Linear Unit	Carriage length Lv [mm]	Mass of linear unit [kg]	Mass moment of inertia [10 ⁻⁵ kg·m ²]
MRJ 40	92	1,25 + 0,0022 * Stroke [mm]	9,3 + 0,003 * Stroke [mm]
MRJ 65 L	190	4,3 + 0,0047 * Stroke [mm]	119,6 + 0,015 * Stroke [mm]
MRJ 80 L	260	8,2 + 0,0075 * Stroke [mm]	424,9 + 0,039 * Stroke [mm]
MRJ 110 L	330	16,3 + 0,0133 * Stroke [mm]	1420,0 + 0,137 * Stroke [mm]

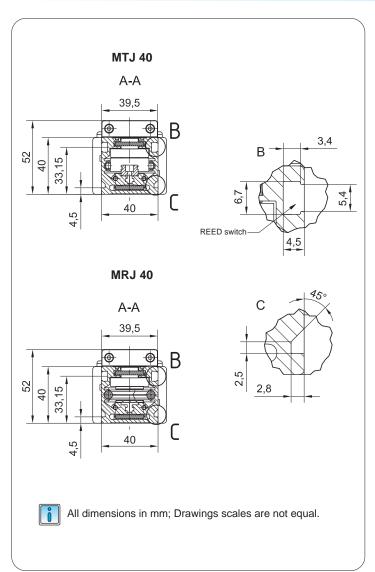

°

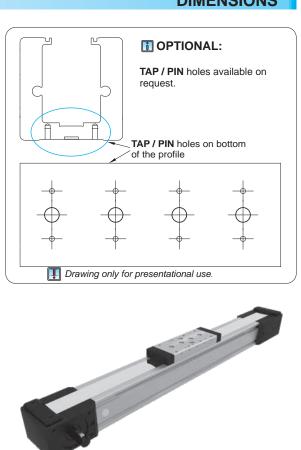

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

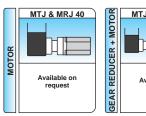

^{**} The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation

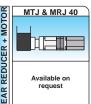

MTJ 40 and MRJ 40 LINEAR UNITS

DIMENSIONS

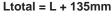


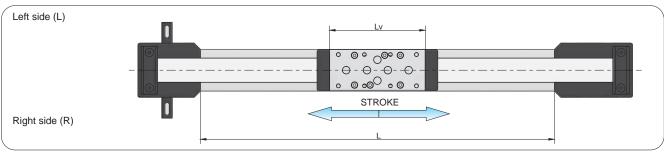





LINEAR UNITS MTJ 40 and MRJ 40

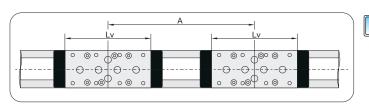
DIMENSIONS




Defining of the linear module length

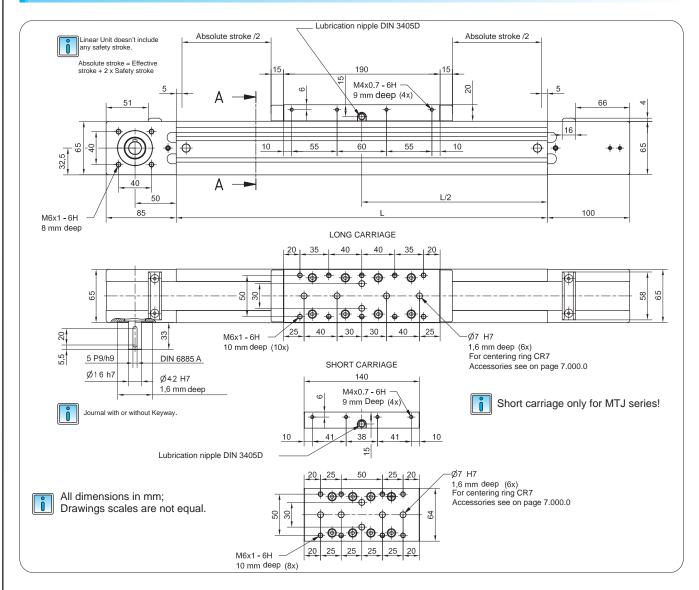
L = Effective stroke + 2 × Safety stroke + Lv + 32 mm

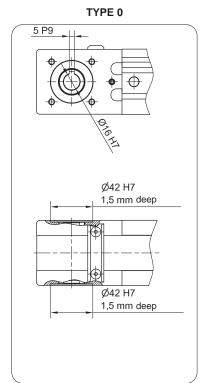
Lv = 92 mm

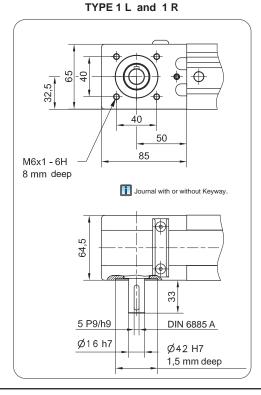

For ordering code please contact us.

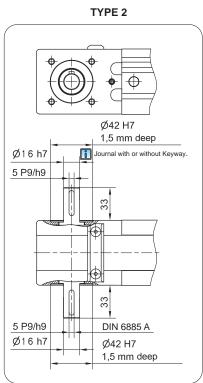
Ltotal = L + 135 mm

mm A > Lv + 24 mm

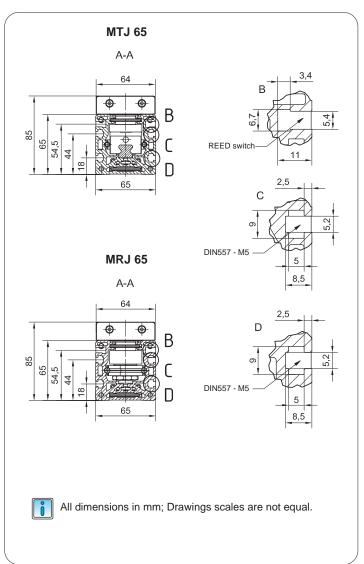


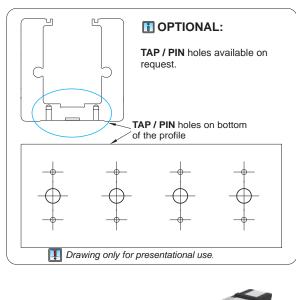

L = Effective stroke + 2 × Safety stroke + Lv + A + 32 mm

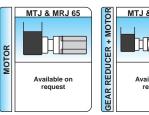

1.030.0

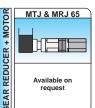

MTJ 65 and MRJ 65 LINEAR UNITS

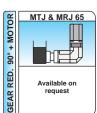
DIMENSIONS

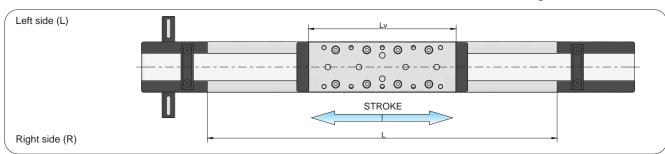





LINEAR UNITS MTJ 65 and MRJ 65

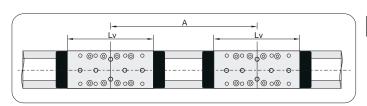

DIMENSIONS





Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + Lv + 40 mm


Lv - Long carriage = 190 mm

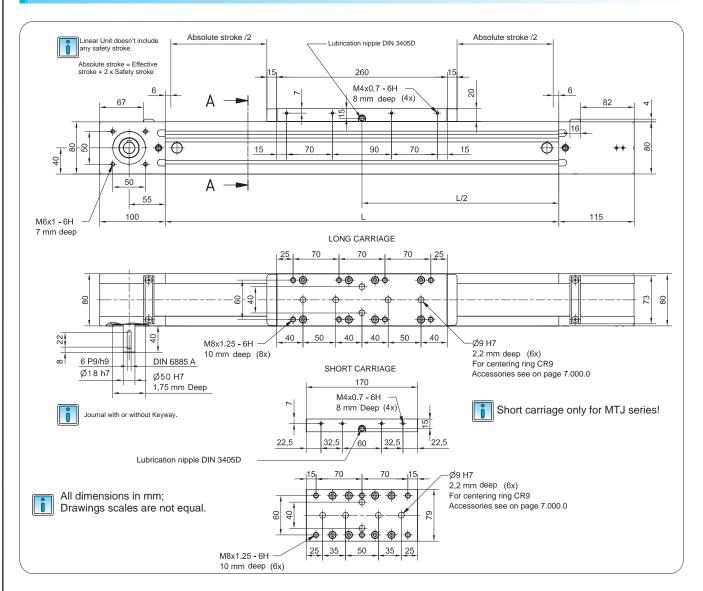
Lv - Short carriage = 140 mm

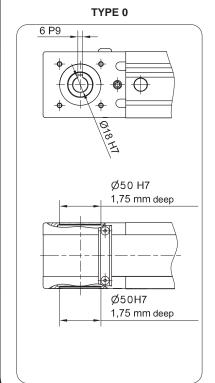
Double-Carriage

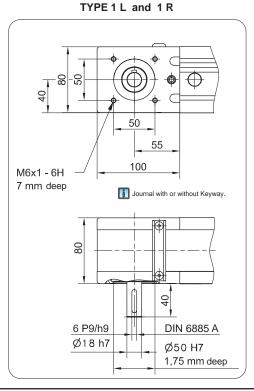
Ltotal = L + 185 mm

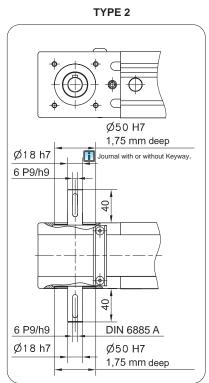
For ordering code please contact us.

L = Effective stroke + $2 \times \text{Safety stroke} + \text{Lv} + \text{A} + 40 \text{ mm}$

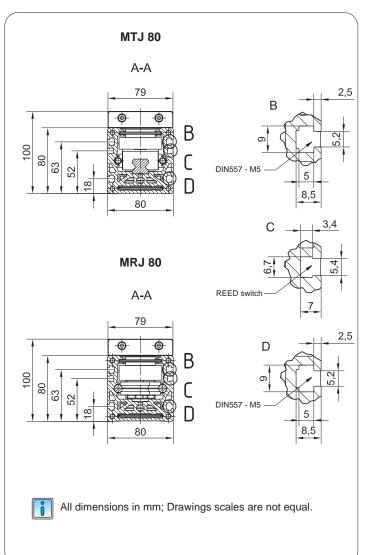

Ltotal = L + 185 mm

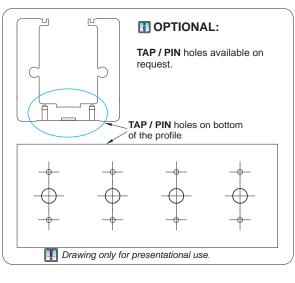

A > Lv + 30 mm

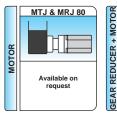


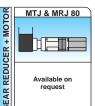

MTJ 80 and MRJ 80 LINEAR UNITS

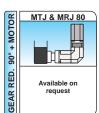
DIMENSIONS



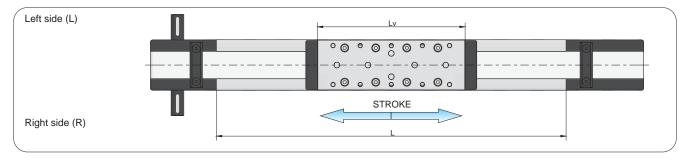



LINEAR UNITS MTJ 80 and MRJ 80

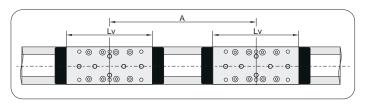

DIMENSIONS



Defining of the linear module length


L = Effective stroke + 2 × Safety stroke + Lv + 42 mm

E = Endouve out one i E x durety out one i Ev i 42 iiii

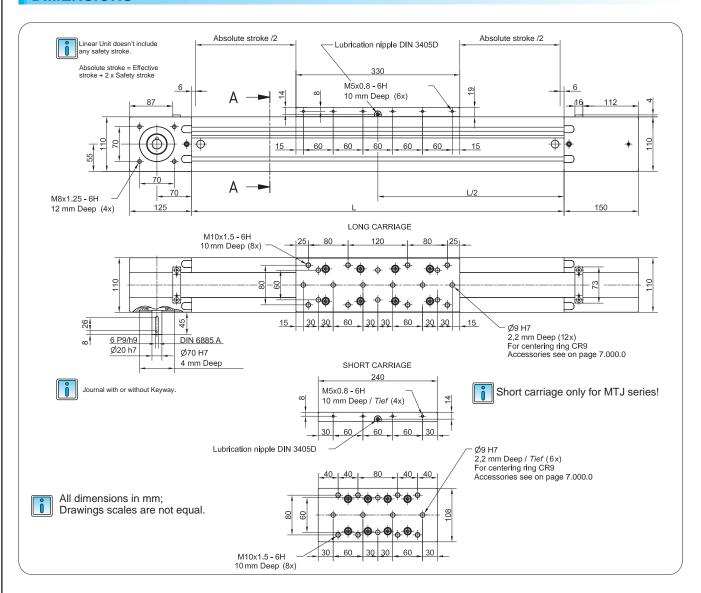

Ltotal = L + 215 mm

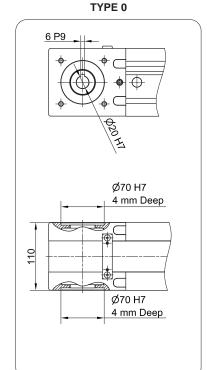
Lv - Long carriage = 260 mm

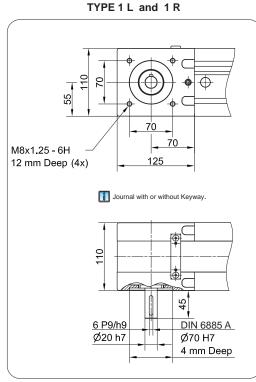
Lv - Short carriage = 170 mm

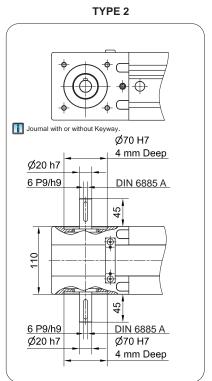
Double-Carriage

For ordering code please contact us.

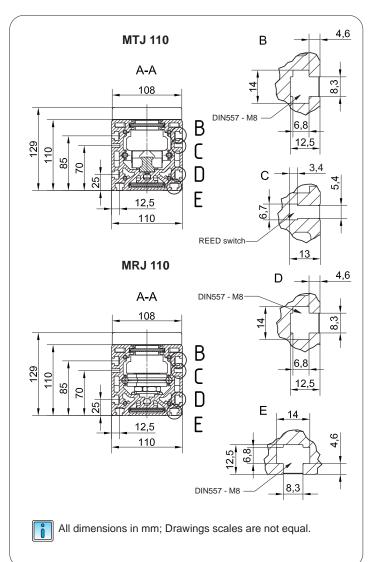

L = Effective stroke + 2 × Safety stroke + Lv + A + 42 mm

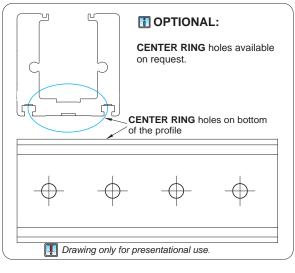

Ltotal = L + 215 mm

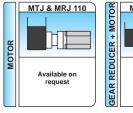

 $A \ge Lv + 30 \text{ mm}$

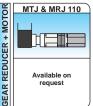


DIMENSIONS

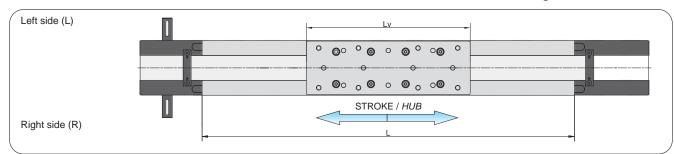






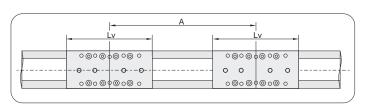

DIMENSIONS





Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + Lv + 12 mm


Lv - Long carriage = 330 mm

Lv - Short carriage = 240 mm

Double Carriage

Ltotal = L + 275 mm

For ordering code please contact us.

L = Effective stroke + $2 \times \text{Safety stroke} + \text{Lv} + \text{A} + 12 \text{ mm}$

Ltotal = L + 275 mm

Notes	LINEAR UNITS

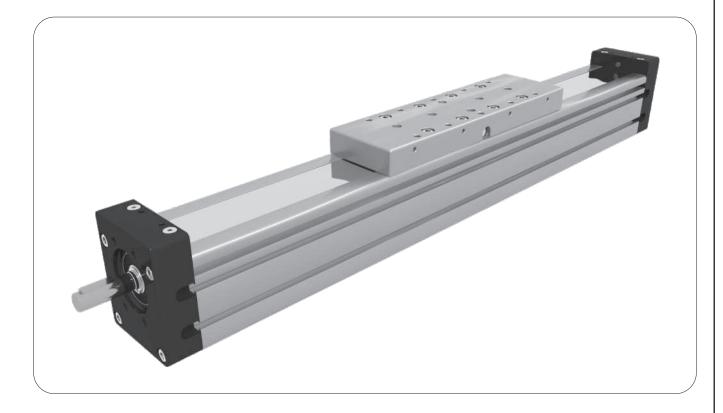
LINEAR UNITS MTV series

CHARACTERISTICS

The **MTV** series describes Linear Units with precision ball screw drive, integrated guide rail and compact dimensions. They provide high performances features, such as high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

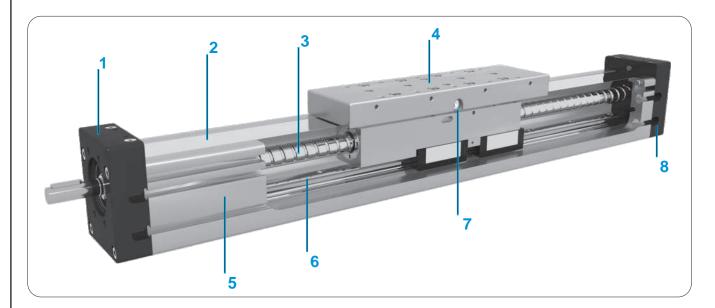

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the Linear Units MTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.

A corrosion-resistant protection strip, protects all the parts in the profile from dust and other contaminants. The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

The carriage, with central lubrication port, allows easy central re-lubrication of ball screw and Ball rail guide and provides the possibility to attach additional accessories on the side.

For the Linear Units MTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.


Ů

The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

MTV series **LINEAR UNITS**

STRUCTURAL DESIGN

- Drive block with floating bearing (MTV 110 fixed bearing)
 Corrosion-resistant protection strip
 Ball screw tolerance ISO7 (ISO5 available on request)
 Carriage; with built in Magnets
 Aluminium profile-Hard anodized
 Integrated Linear Ball Guideway
 Central lubrication port; both sides
 End block with fixed bearing (MTV 110 floating bearing)

- 8 End block with fixed bearing (MTV 110 floating bearing)

HOW TO ORDER

	MTV -	65	1610	ISO7 -	1	1000
Series :						
MTV						
Size :						
65						
80						
110						
Ball screw :						
MTV 65 : Ø16×5, Ø16×10, Ø1	ô×16					
MTV 80 : Ø20×5, Ø20×10, Ø2	0×20					
MTV 110: Ø32×5, Ø32×10, Ø3	2×20, Ø32×32					
Ball screw tolerance :						
ISO7 (Standard)						
ISO5						
Ball screw journal :						
0 : Without keyway						
1: With keyway						
Absolute stroke (mm) : (Absolute stroke = Effective	stroke + 2 x Saf	etv stroke)				

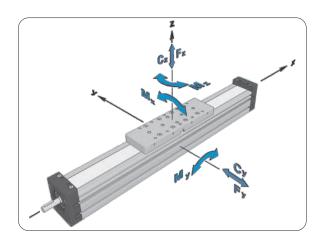
LINEAR UNITS MTV series

TECHNICAL DATA

General technical data for MTV series

Linear Unit	Carriage length	Load ca		Dynamic moment			Moved mass	* Maximum length		noment of ertia
	Lv [mm]	Dynamic C[N]	Static C0 [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	Lmax [mm]	ly [cm ⁴]	Iz [cm ⁴]
MTV 65	220	13690	19500	130	480	480	1,5	2500	71,0	89,3
MTV 80	290	29930	42360	400	1280	1280	3,0	2500	143,5	204,0
MTV 110	330	43700	60400	680	2330	2330	4,9	3000	562	669

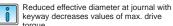
 $^{{}^{\}textstyle \bigstar} {}$ For lengths over the stated value in the table above, please contact us



Recommended values of loads:

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv =5.0)

Modulus of elasticity


 $E = 70000 \text{ N} / \text{mm}^2$

Ball Screw Drive data

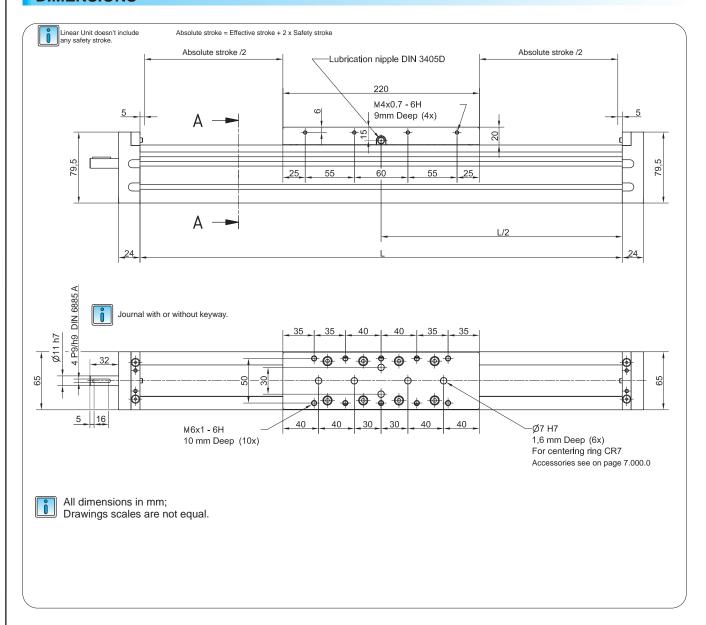
Linear Unit	¹ Maximal travel speed		² No load torque	Lead constant	Ball screw	Ball screw 3 Max. repeteability precision [mm]		Dynamic axial load capacity	Maximal drive torque
	[m / s	3]	[Nm]	[mm / rev]	[d×l]	STANDARD ISO7	ISO5	Ca [N]	Ma [Nm]
		≤ 0,35	0,11	5	16 × 5	± 0,02	± 0,01	8700	4,3
MTV 65	34,2·10 ³ ·I / L ² [mm]	≤ 0,70	0,12	10	16 × 10	± 0,02	± 0,01	8700	8,6
		≤ 1,12	0,13	16	16 × 16	± 0,02	± 0,01	8170	11,9
		≤ 0,28	0,16	5	20 × 5	± 0,02	± 0,01	8700	4,3
MTV 80	64,2·10 ³ ·I/L ² [mm]	≤ 0,55	0,17	10	20 × 10	± 0,02	± 0,01	8700	8,6
		≤ 1,13	0,18	20	20 × 20	± 0,02	± 0,01	8700	17,3
	108·10 ³ I / L ² [mm]	≤ 0,18	0,6	5	32 × 5	± 0,02	± 0,01	18870	11,9
	99,0·10 ³ ·I/L ² [mm]	≤ 0,35	0,7	10	32 × 10	± 0,02	± 0,01	30300	29,2
MTV 110	105·10 ³ ·I/L ² [mm]	≤ 1,00	0,7	20	32 × 20	± 0,02	± 0,01	21000	39,3
	103·10 ³ ·I/L ² [mm]	≤ 1,60	0,8	32	32 × 32	± 0,02	± 0,01	30300	52,3

¹ For travel speed over the stated value in the table above please contact us.

	Linear Unit	Max. permissible drive torque
		Ma [Nm]
	MTV 65	5,5
	MTV 80	11,9
Ī	MTV 110	27,3
$\overline{}$		

Mass and mass moment of inertia

Linear Unit	Carriage length	Mass of linear unit [kg]	Mass moment of inertia [10 ⁻⁵ kg·m ²]
MTV 65	220	4 + 0,0073 * Stroke [mm]	2,5 + 0,005 * Stroke [mm]
MTV 80	290	8,2 + 0,0114 * Stroke [mm]	8,5 + 0,013 * Stroke [mm]
MTV 110	330	17,3 + 0,0216 * Stroke [mm]	52,5 + 0,083 * Stroke [mm]

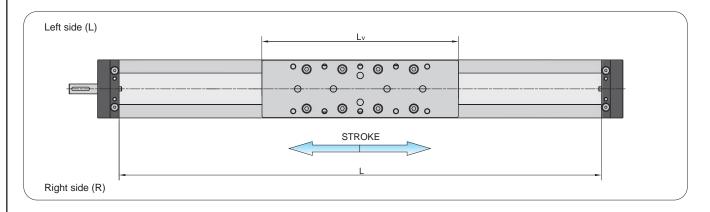

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

²The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation

³For the ball nut with the preload of 2%, please contact us.

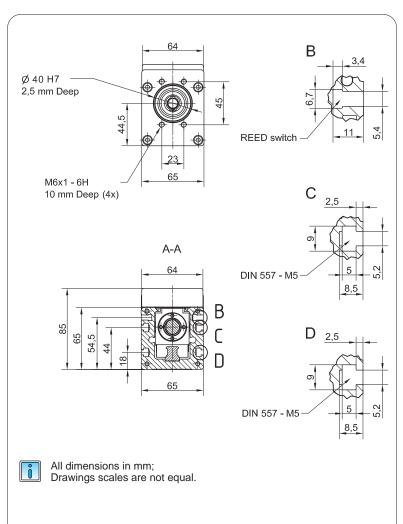
MTV 65 LINEAR UNITS

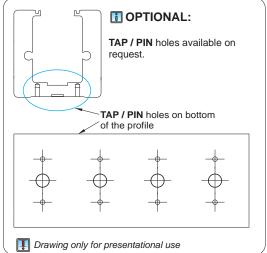
DIMENSIONS



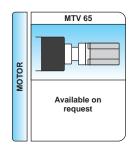
Defining of the linear module length

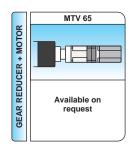
 $L = \text{Effective stroke} + 2 \times \text{Safety stroke} + Lv + 10 \text{ mm}$

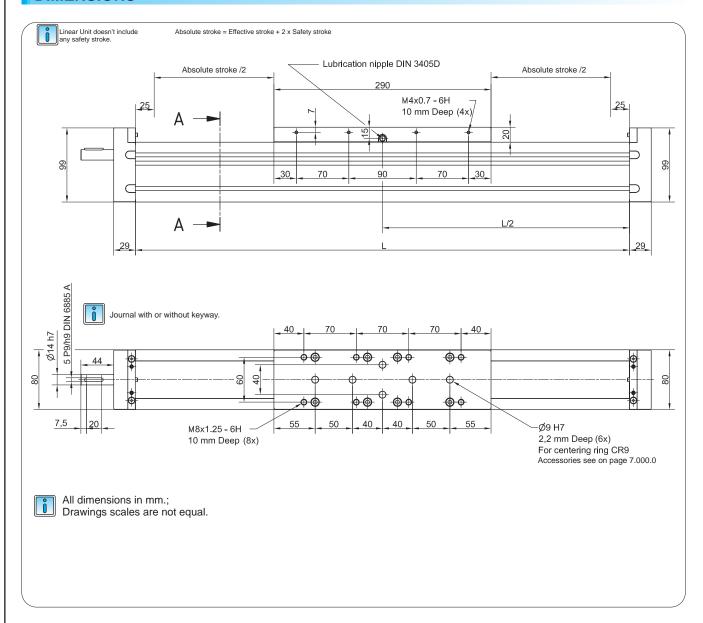

Lv = 220 mm


Ltotal = L + 48 mm

LINEAR UNITS MTV 65


DIMENSIONS

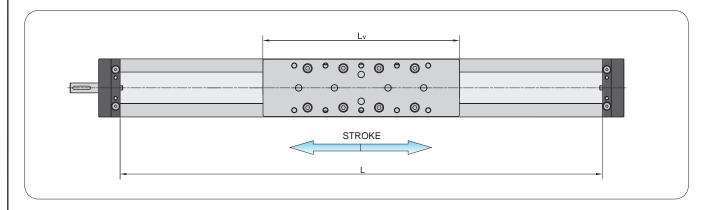




More info about MSD please refer to page 6.045.0

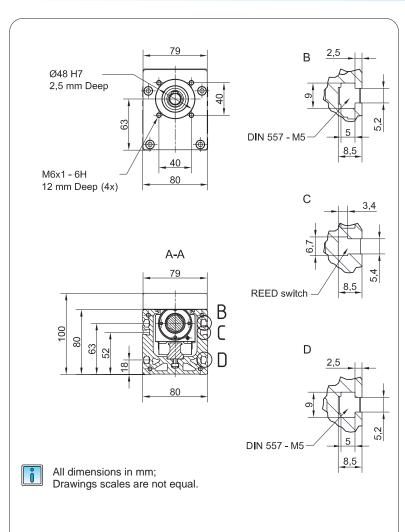
MTV 80 LINEAR UNITS

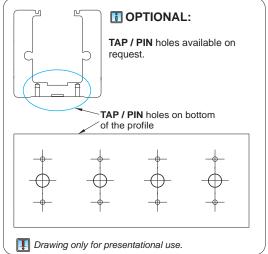
DIMENSIONS



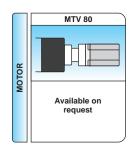
Defining of the linear module length

 $L = \text{Effective stroke} + 2 \times \text{Safety stroke} + Lv + 50 \text{ }mm$

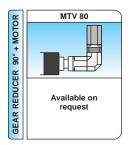

Lv = 290 mm

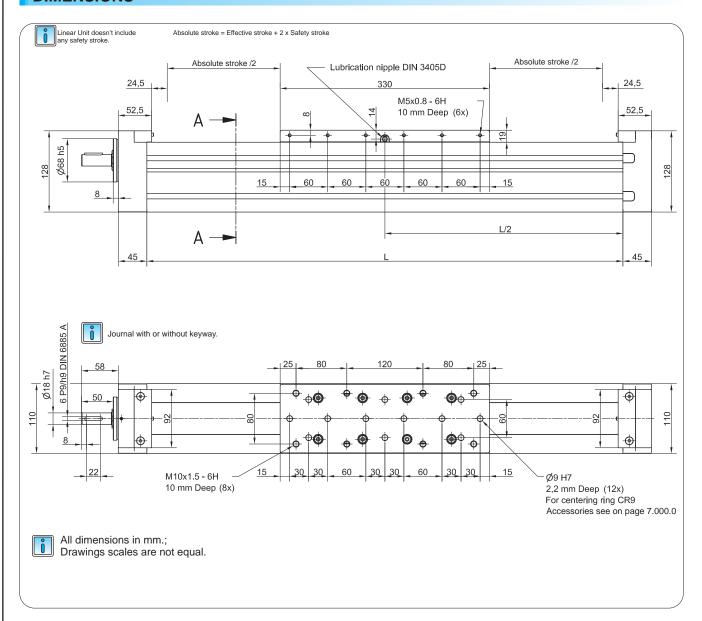

Ltotal = L + 58 mm

LINEAR UNITS MTV 80


DIMENSIONS



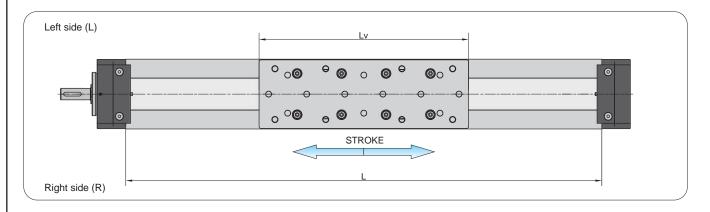




More info about MSD please refer to page 6.045.0

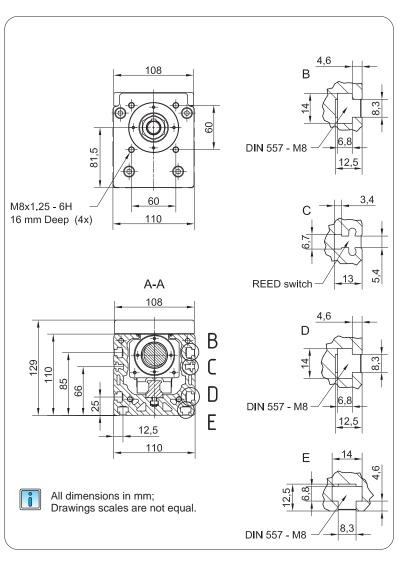
MTV 110 LINEAR UNITS

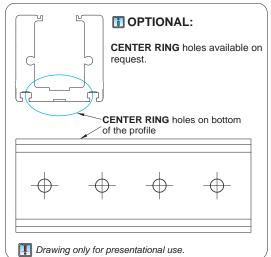
DIMENSIONS

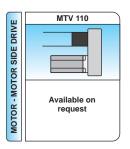


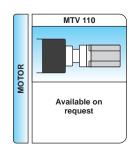
Defining of the linear module length

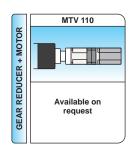
 $L = \text{Effective stroke} + 2 \times \text{Safety stroke} + Lv + 64 \text{ mm}$

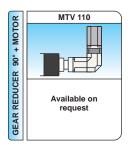

Lv = 330 mm


Ltotal = L + 90 mm


LINEAR UNITS MTV 110


DIMENSIONS





More info about MSD please refer to page 6.045.0

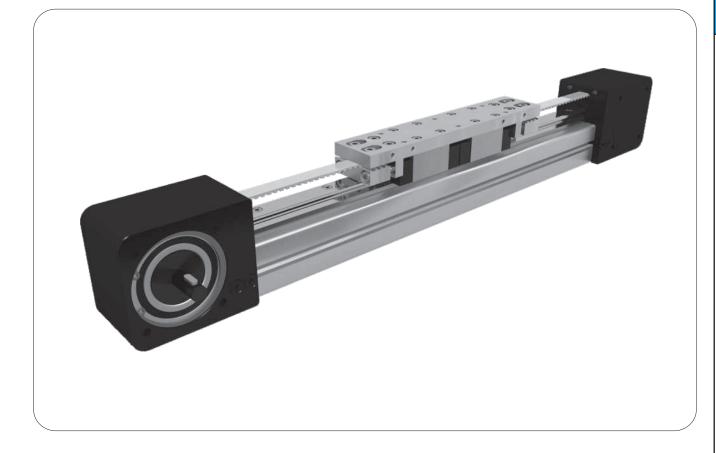
Notes	LINEAR UNITS

LINEAR UNITS MTJ ECO series

CHARACTERISTICS

The **MTJ ECO** series Linear Unit is a powerful and cost-effective Linear Unit with toothed belt drive and a Zero-backlash Ball rail guide system for easy and accurate linear movements.

It can easily be combined to multi-axis systems.


Excellent price-/performance ratio and quick delivery time are ensured.

An extruded aluminum Profile from 6063 AL with on it mounted Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed. The linear unit MTJ ECO uses a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The aluminum Profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Different carriage lengths of the Linear Unit allow the possibility to attach additional accessories on the side.

Lubrication holes on the carriage allow easy re-lubrication of the Ball rail guide .

For the linear unit MTJ ECO various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.



The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

MTJ ECO series LINEAR UNITS

STRUCTURAL DESIGN

- 1 Drive block with pulley
- 2 AT polyurethane toothed belt with steel tension cords
- 3 Carriage
- 4 Linear Ball Guideway
- **5 -** Belt Tensioning system
- 6 Lubrication port
- 7 Aluminium profile-Hard anodized
- 8 End block

HOW TO ORDER

MTJ - 40 - ECO - 1000 - L - 1	-
Series :	_ =
MTJ	
Size :	
40	
Type:	
ECO	
Absolute stroke (mm): (Absolute stroke = Effective stroke + 2 x Safety stroke)	
Carriage Version :	
S: Short	
L: Long	
Type of drive pulley:	
0: Pulley with through hole	
1: Pulley with journal	
10 : Pulley with journal (without Keyway)	
2: Pulley with journal on both sides	
20 : Pulley with journal on both sides (without Keyway)	
3: Without drive unit	
Drive journal position :	
I · Journal on left side	

R: Journal on right side

Leave blank: For type of drive pulley 0, 2, 20 and 3

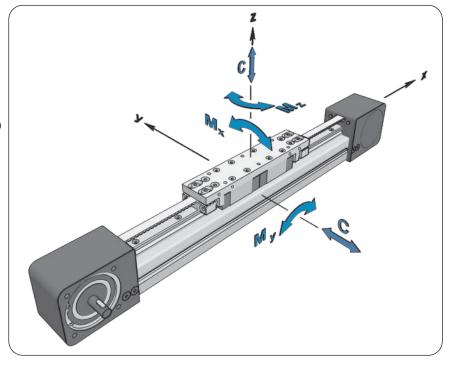
LINEAR UNITS MTJ ECO series

TECHNICAL DATA

General technical data for MTJ ECO series

Linear Unit	Carriage length	Load capacity Dynamic Static		Dynamic moment			Moved mass	Maximum Repeatability	* Maximum Planar momen length inertia		
	Lv [mm]	Ć[N]	C0[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	Lmax [mm]	ly [cm4]	lz [cm4]
MTJ 40 ECO S	132	9320	19620	60	50	50	0,45	± 0,1	5960	9,53	9,21
MTJ 40 ECO L	200	18650	39250	120	620	620	0,72	± 0,1	3900	9,03	3,21

^{*}For lengths over the stated value in the table above, please contact us.



Recommended values of loads

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv =5.0)

Modulus of elasticity

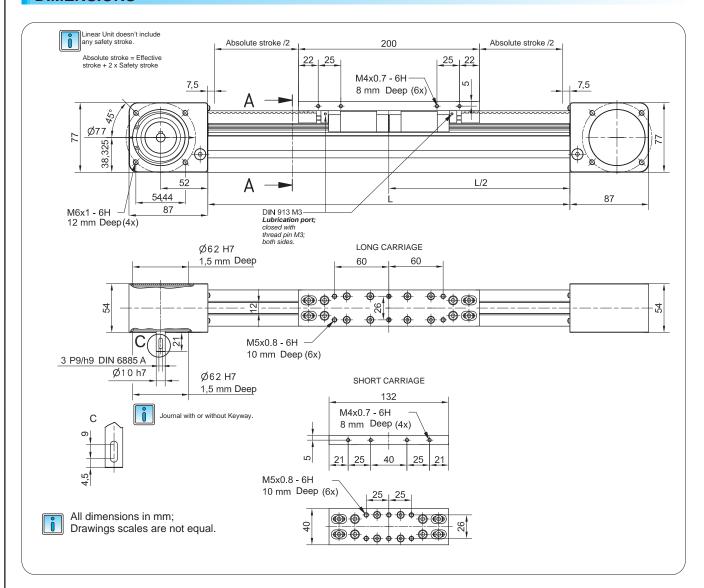
 $E = 70000 \text{ N} / \text{mm}^2$

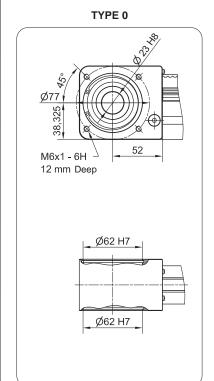
Drive and belt data

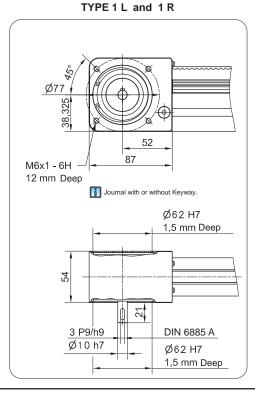
Linear Unit	Maximal travel speed	Maximum drive torque	* No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]
MTJ 40 ECO S	3	7,5	0,8	180	57,31	AT5	12	262	235000

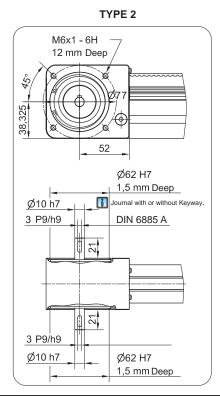
^{*}The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation

Mass and mass moment of inertia

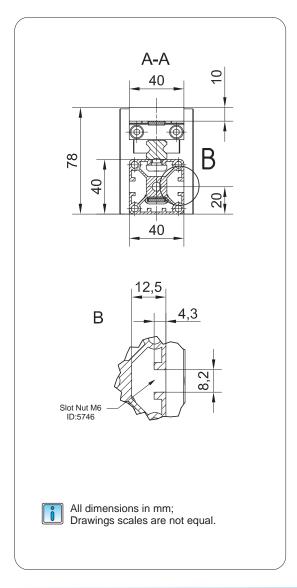

Linear Unit	Carriage length	Mass of linear unit [kg]	Mass moment of inertia [10 ⁻⁵ kg·m ²]		
MTJ 40 ECO S	132	3,1 + 0,003 * Stroke [mm]	70,1 + 0,007 * Stroke [mm]		
MTJ 40 ECO L	200	3,55 + 0,003 * Stroke [mm]	92,3 + 0,007 * Stroke [mm]		

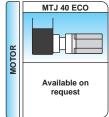



 $\label{lem:mass} \textit{Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.}$

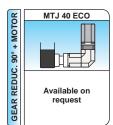

MTJ 40 ECO series LINEAR UNITS

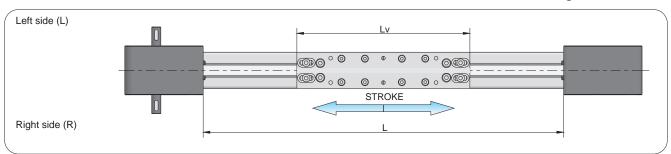
DIMENSIONS





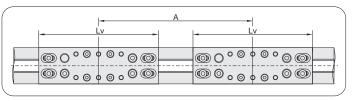
LINEAR UNITS MTJ 40 ECO series


TECHNICAL DATA



Defining of the linear module length

 $L = \text{Effective stroke} + 2 \times \text{Safety stroke} + Lv + 15 \text{ mm}$


Lv - Long carriage = 200 mm

Lv - Short carriage = 132 mm

Double Carriage

Ltotal = L + 174 mm

For ordering code please contact us.

L = Effective stroke + 2 × Safety stroke + Lv + A + 15 mm

Ltotal = L + 174 mm

Notes	LINEAR UNITS

LINEAR UNITS MTJZ series

CHARACTERISTICS

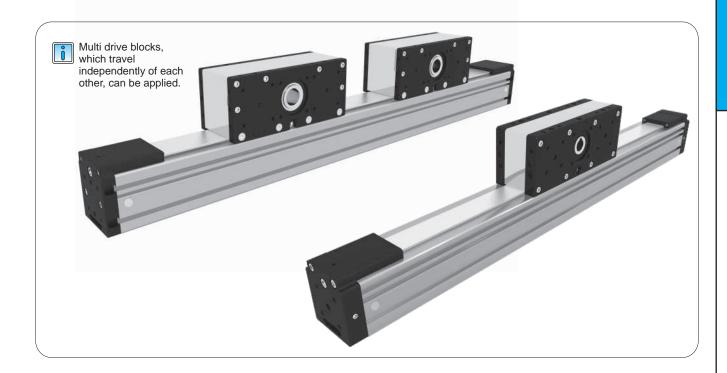
The **MTJZ** series contains Z-axis Linear Units with toothed belt drive, integrated Ball rail system and compact dimensions. This Linear Units provide high performance features such as, high speed, good accuracy and repeatability by vertical applications.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

In the linear units MTJZ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

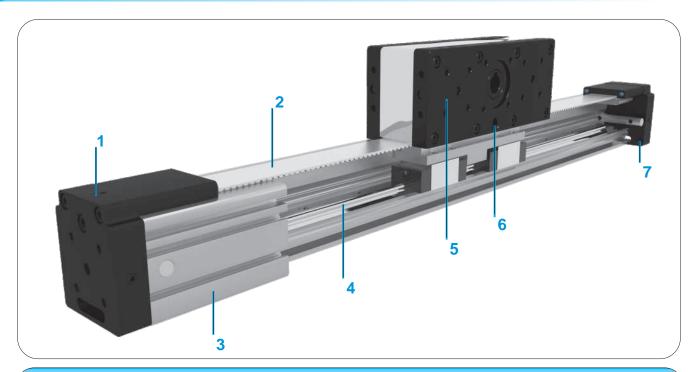

The in the Profile slot driving Polyurethane timing belt protects all the parts in the Profile from dust and other contaminations

The aluminum Profile includes T-slots for attaching sensors and switches. Also, a Reed switch can be used here

The drive block provides the possibility to attach a Motor or Gearbox housing and additional accessories on it

Central lubrication port on the drive block allows easy re-lubrication of the Ball rail guide.

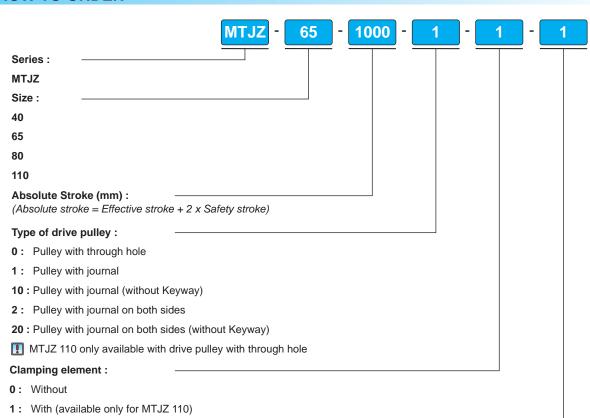
For the linear units MTJZ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.


Ů

The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

MTJZ series LINEAR UNITS


STRUCTURAL DESIGN

- 1 Tension End with integrated belt tensionin system
- **2 -** AT polyurethane toothed belt with steel tension cords.
- **3 -** Aluminium profile-Hard anodized
- 4 Linear Ball Guideway
- 5 Drive block with pulley, Motor flange; with built in Magnets
- 6 Central lubrication port; both sides
- 7 Tension End with integrated belt tensioning system

The stated number specifies the number of drive blocks on one Linear unit

HOW TO ORDER

Number of drive blocks:

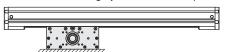
LINEAR UNITS MTJZ series

TECHNICAL DATA

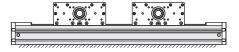
General technical data for MTJZ series

Linear Unit	Drive block length	i Load ca	apacity	i Dyr	Dynamic moment N		Mass of drive block	Maximum Repeatability	* Maximum length **(Version 1)	* Maximum length **(Version 2)	Planar mo	
	Lv [mm]	Dynamic C [N]	Static C0 [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	Lmax [mm]	Lmax [mm]	ly [cm ⁴]	lz [cm ⁴]
MTJZ 40	120	4610	6930	28	120	120	0,95	± 0,08	1000	2000	9,8	11,6
MTJZ 65	200	13690	19500	130	710	710	3,2	± 0,08	1200	6000	59,8	73,8
MTJZ 80	250	29930	42360	400	2240	2240	4,9	± 0,08	1500	6000	129,4	173,5
MTJZ 110	300	43700	60400	680	3060	3060	11,3	± 0,08	1800	6000	513,0	620,0

^{*}For lengths over the stated value in the table above please contact us.

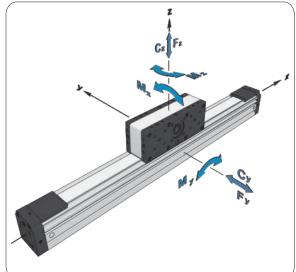

Recommended values of loads

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv =5.0)


Modulus of elasticity: $E = 70000 \text{ N} / \text{mm}^2$

** Mounting versions

Version 1: Mounting by the drive block, profile travels



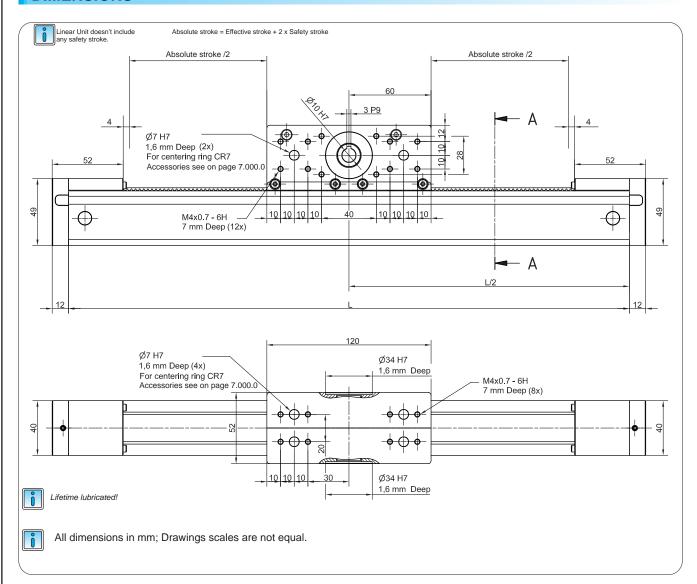
Version 2: Mounting by the profile, drive block travels

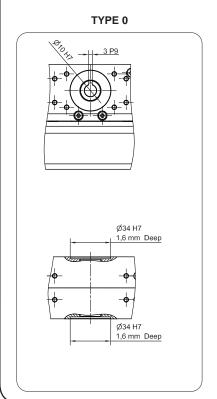
Multi drive blocks, which travel independently of each other, can be applied.

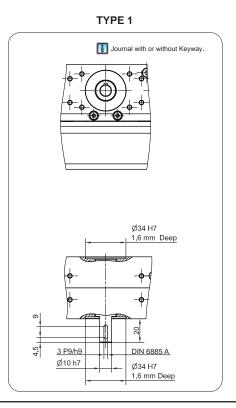
Drive and belt data

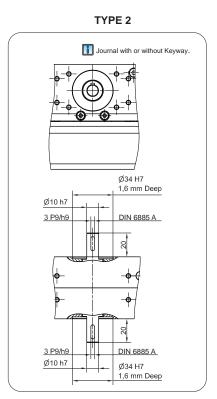
Linear Unit	Maximum travel speed	Maximum drive torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant Cspec
	[m/s]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]
MTJZ 40	5	3,6	99	31,51	AT3	20	230	225000
MTJZ 65	5	13,1	165	52,52	AT5	32	500	600000
MTJZ 80	5	29,4	210	66,84	AT5	50	880	960000
MTJZ 110	5	110,0	300	95,49	AT10	70	2300	2450000

Mass and mass moment of inertia

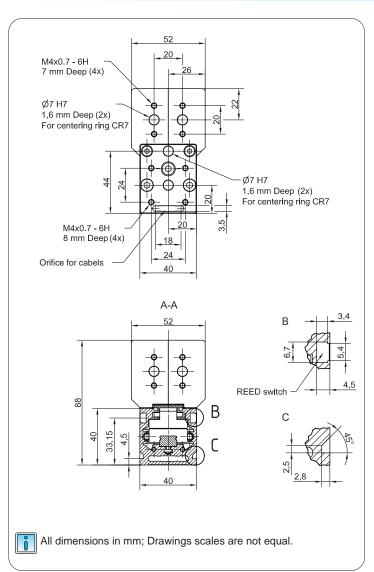

Linear Unit	Mass of linear unit	Mass moment of inertia of drive block
	[kg]	[10 ⁻⁴ kg·m ²]
MTJZ 40	1,7 + 0,0023 * Stroke [mm]	2,3 + 0,0058 * Stroke [mm]
MTJZ 65	5,7 + 0,0054 * Stroke [mm]	18,9 + 0,0361 * Stroke [mm]
MTJZ 80	9,7 + 0,0083 * Stroke [mm]	60,5 + 0,0922 * Stroke [mm]
MTJZ 110	21,7 + 0,0147 * Stroke [mm]	273,0 + 0,3358 * Stroke [mm]

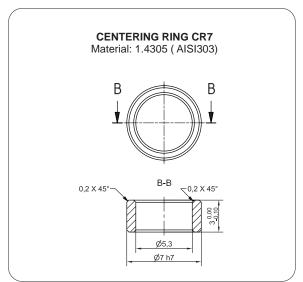



Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


MTJZ 40 LINEAR UNITS

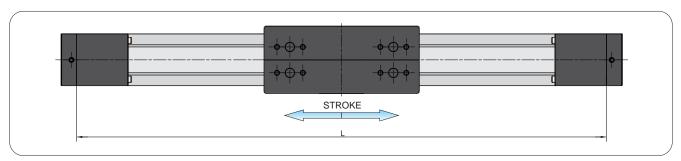
DIMENSIONS

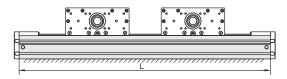




LINEAR UNITS MTJZ 40

DIMENSIONS

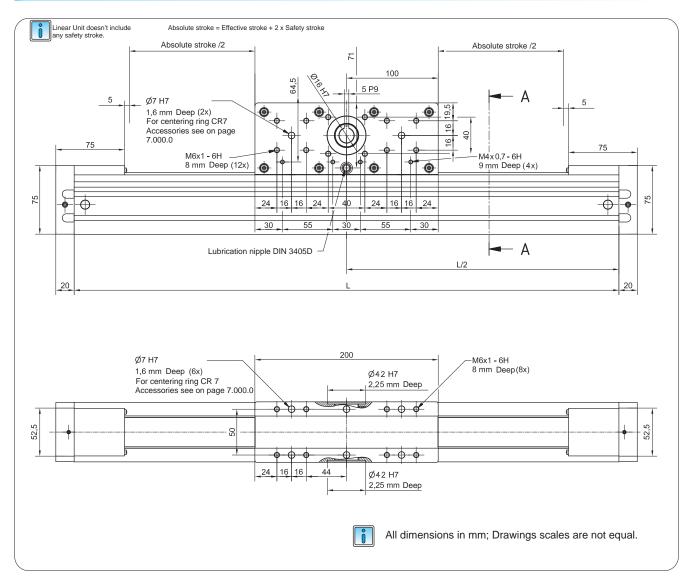



Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + 208 mm

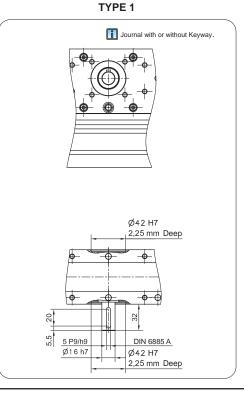
Ltotal = L + 24 mm

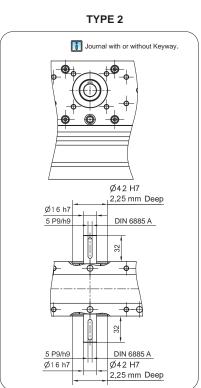
Multi drive block



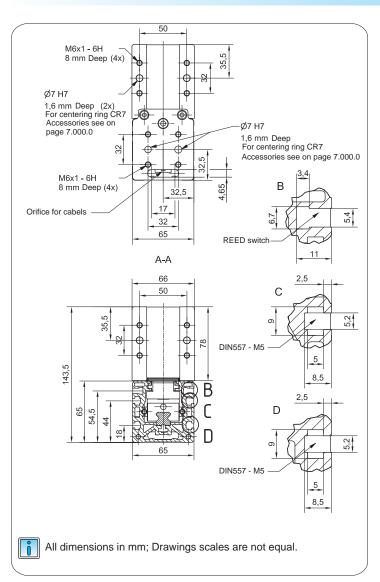
L = Effective stroke + $2 \times \text{Safety stroke} + 120 \times n_b + 88 \text{ mm}$

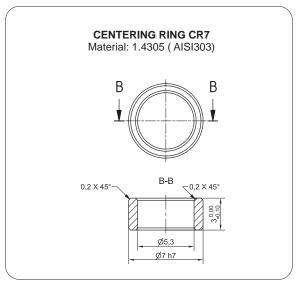
 n_b - number of drive blocks


MTJZ 65 LINEAR UNITS


DIMENSIONS

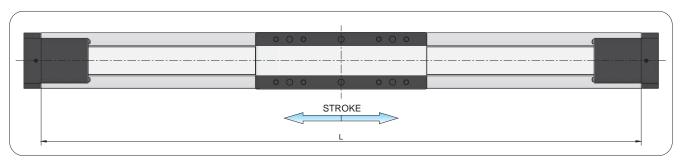
Ø42 H7
2,25 mm Deep

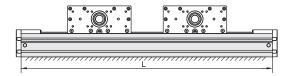

Ø42 H7
2,25 mm Deep



LINEAR UNITS MTJZ 65

DIMENSIONS

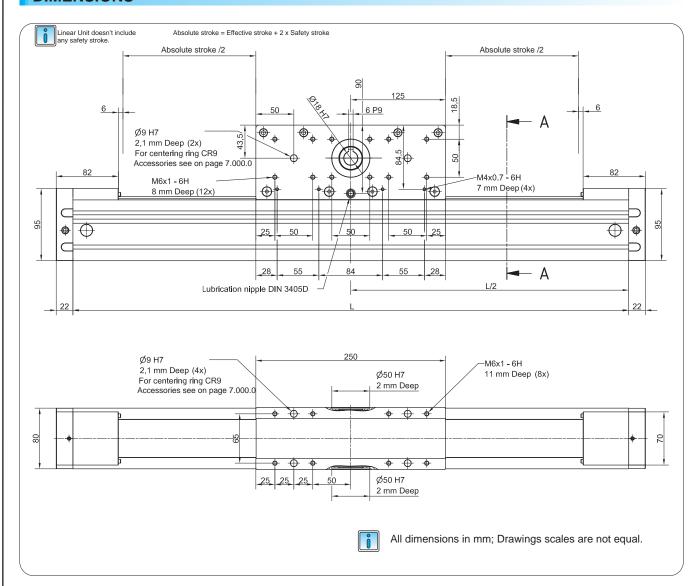


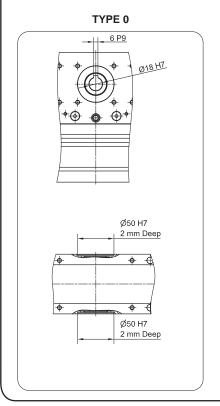

Defining of the linear module length

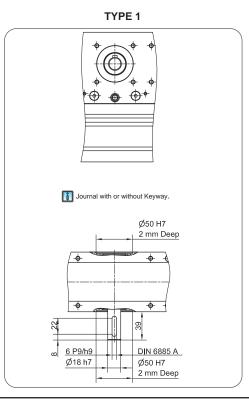
L = Effective stroke + 2 × Safety stroke + 320 mm

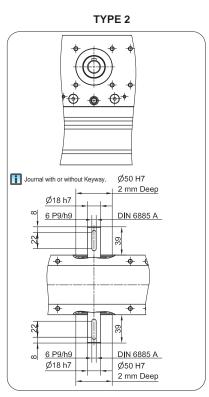
Ltotal = L + 40 mm

Multi drive block

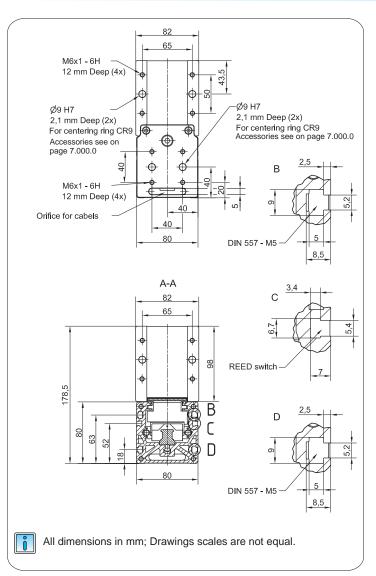

L = Effective stroke + 2 \times Safety stroke + 200 \times n_b + 120 mm

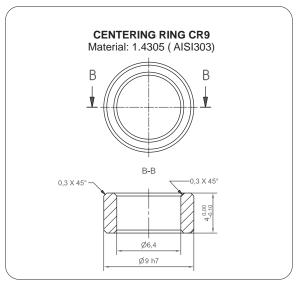

 $\mathbf{n}_{\mathbf{b}}$ - number of drive blocks


Ltotal = L + 40 mm


MTJZ 80 LINEAR UNITS

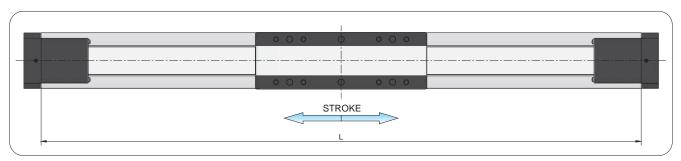
DIMENSIONS

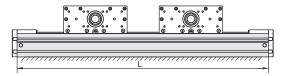




LINEAR UNITS MTJZ 80

DIMENSIONS

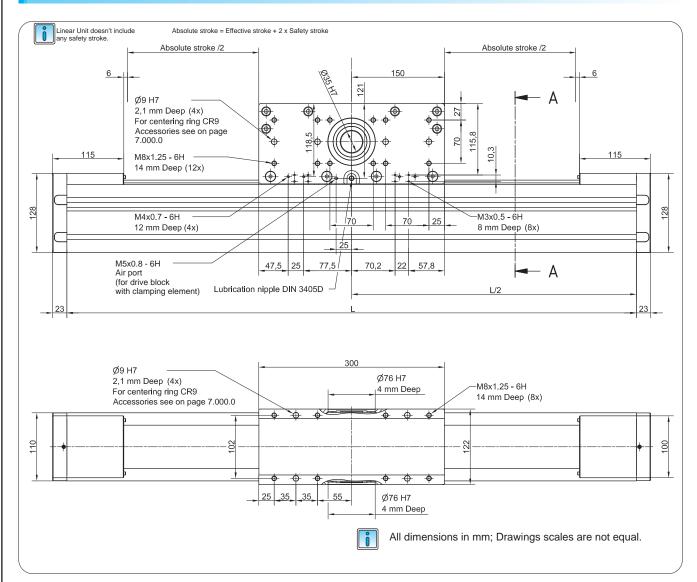



Defining of the linear module length

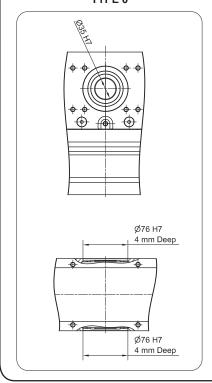
L = Effective stroke + 2 × Safety stroke + 382 mm

Ltotal = L + 44 mm

Multi drive block

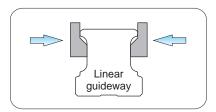

L = Effective stroke + 2 \times Safety stroke + 250 \times n_b + 132 mm

 $\mathbf{n}_{\mathbf{b}}$ - number of drive blocks


Ltotal = L + 44 mm

MTJZ 110 LINEAR UNITS

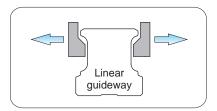
DIMENSIONS



TYPE 0

Drive block with clamping element

Clamping by spring-loaded energy



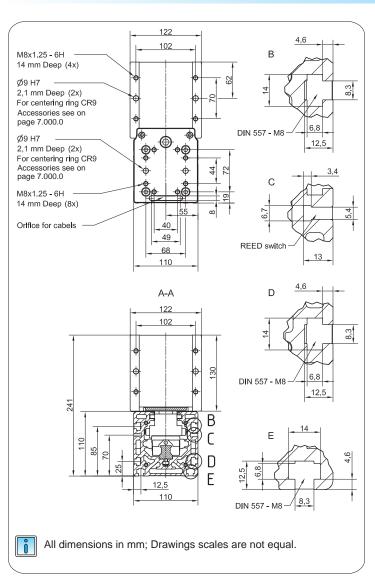
Air pressure = 0 bar

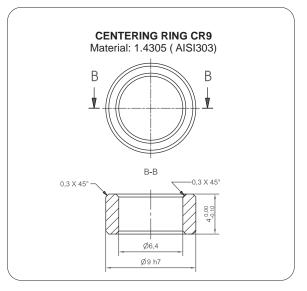
Holding force = 1400 N

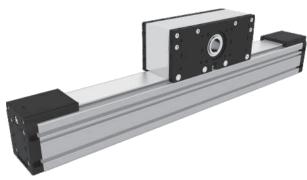
Holding force is tested on clamping element using a slightly lubricated rail (ISO VG 68).

Opened by air pressure

Opening air pressure = 5,5 - 8 bar

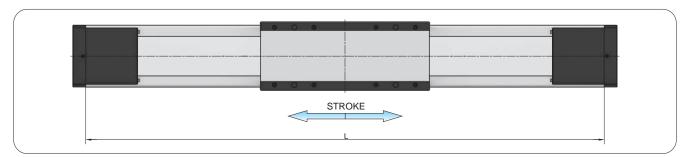

The air pressure opens clamping pistons. Free movement is allowed.

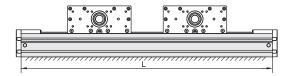

Purified and oiled air shall be used. Recommended filter size is 25 µm.


Linear Unit	Mass of drive block	Mass of linear unit			
	[kg]	[kg]			
MTJZ 110	12,9	23,3 + 0,0147 * Stroke [mm]			

LINEAR UNITS MTJZ 110

DIMENSIONS




Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + 496 mm

Ltotal = L + 46 mm

Multi drive block

L = Effective stroke + 2 \times Safety stroke + 300 \times n_b + 196 mm

 $\mathbf{n}_{\mathbf{b}}$ - number of drive blocks

Notes	LINEAR UNITS

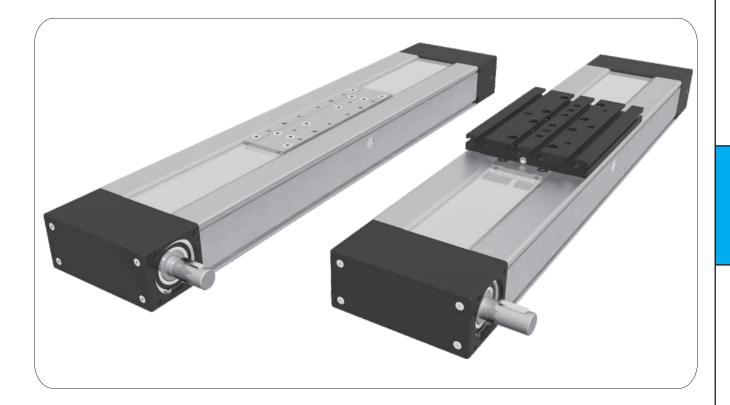
LINEAR UNITS CTJ series

CHARACTERISTICS

The **CTJ** series includes Linear Units with a toothed belt drive and two parallel, integrated, Zero-backlash rail guides. Compact dimensions allow high performance features such as, high speed and repeatability. They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

A compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated Zero-backlash rail guide systems, allows high load capacities and an optimal sequence for the movement of larger masses at high speed.

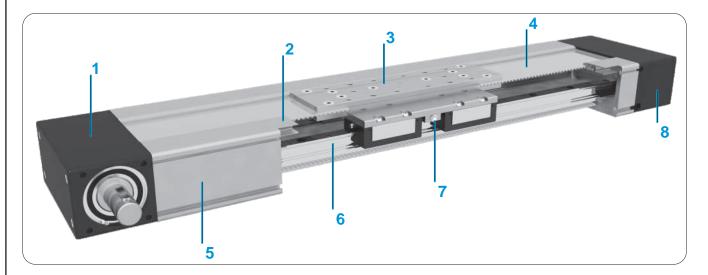

In the linear units CTJ is used a pre-tensioned steel reinforced AT polyurethane timing toothed belt. In conjunction with a Zero-backlash drive pulley high moments with alternating loads with good positioning accuracy, low wear and low noise can be realized.

The in the Profile slot driving Polyurethane timing belt, protects all the parts in the Profile from dust and other contaminations.

Different carriage lengths with lubrication port allows for easy re-lubrication of the Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.

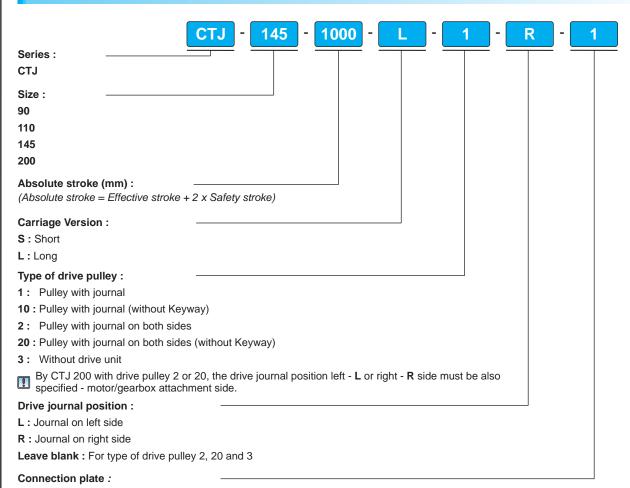
The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTJ various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.


ů

The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2


CTJ series LINEAR UNITS

STRUCTURAL DESIGN

- **1 -** Drive block with pulley
- 2 Aluminum cover
- 3 Carriage; with built in Magnets
- 4 AT polyurethane toothed belt with steel tension cords
- 5 Aluminium profile-Hard anodized
- 6 Two integrated Linear Ball Guideways
- 7 Central lubrication port; both sides
- 8 Tension End with integrated belt tensioning system

HOW TO ORDER

0: Without

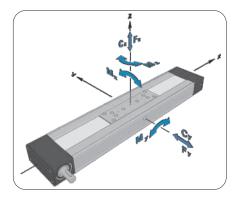
LINEAR UNITS CTJ series

TECHNICAL DATA

General technical data for CTJ series

Linear Unit	Carriage length	Load cap	•	Dynamic moment		Moved mass	Maximum Repeatability	* Maximum length	Planar mome	ent of inertia	
	Lv [mm]	Dynamic C[N]	Static C0 [N]	Mx [Nm]	My [Nm]	Mz [Nm]	[kg]	[mm]	Lmax [mm]	ly [cm ⁴]	lz [cm ⁴]
CTJ 90 S	102	4620	6930	120	12	25	0,20	± 0,08	6000	13,5	106,5
CTJ 90 L	156	9240	13860	250	290	290	0,35	± 0,08	0000	10,0	100,0
CTJ 110 S	170	19800	28200	610	140	290	0,64	± 0,08	6000	31,0	215,7
CTJ 110 L	215	39600	56400	1220	1680	1680	0,98	± 0,08			
CTJ 145 S	180	34200	48400	1500	320	650	1,35	± 0,08	6000	78,6	699,5
CTJ 145 L	240	68400	96800	3000	3420	3420	2,25	± 0,08	0000	70,0	000,0
CTJ 200 S	265	49600	68600	3230	550	1110	3,05	± 0,08	6000	376,5	2734,5
CTJ 200 L	405	99200	137200	6470	8680	8680	5,70	± 0,08	. 0000	310,3 21	2734,3

 $^{^{}f *}$ For lengths over the stated value in the table above please contact us



Recommended values of loads

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv =5.0)

Modulus of elasticity

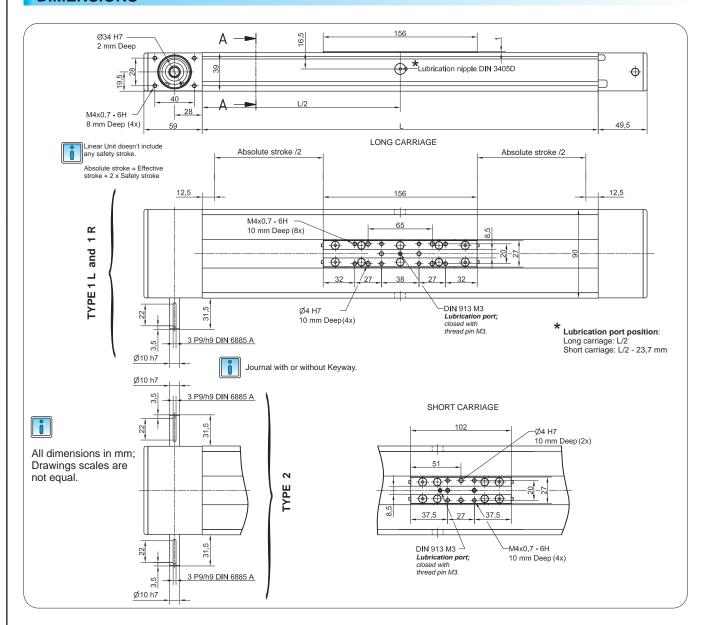
 $E = 70000 \text{ N} / \text{mm}^2$

Drive and belt data for CTJ series

			*							
Linear Unit	Maximum travel speed	Maximum drive torque	No load torque	Puley drive ratio	Pulley diameter	Belt type	Belt width	Max. force transmited by belt	Specific spring constant	
									Cspec	
	[m/s]	[Nm]	[Nm]	[mm / rev]	[mm]		[mm]	[N]	[N]	
CTJ 90 S	5	5 7,5		0,40	90	28,65	AT 3	35	520	402500
CTJ 90 L		7,0	0,42		,					
CTJ 110 S	6	15,7	0,98	120	38,20	AT 5	50	820	960000	
CTJ 110 L			1							
CTJ 145 S	6	33,6	1,48	165	52,52	AT 5	70	1280	1360000	
CTJ 145 L	Ü	00,0	1,5		,					
CTJ 200 S	- - - 6	102 with keyway	2,3	250	79,58	AT 10	100	3250	4350000	
CTJ 200 L		129 without keyway	2,8							

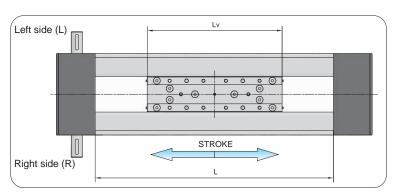
 $f{*}$ The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation

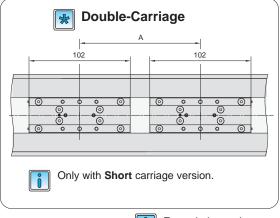
Mass and mass moment of inertia


Linear Unit	Carriage length Lv [mm]	Mass of linear unit	Mass moment of inertia [10 ⁻⁵ kg·m ²]		
CTJ 90 S	102	1,7 + 0,0048 * Stroke [mm]	7 + 0,0031 * Stroke [mm]		
CTJ 90 L	156	2,1 + 0,0048 * Stroke [mm]	11 + 0,0031 * Stroke [mm]		
CTJ 110 S	170	3,6 + 0,0072 * Stroke [mm]	36 + 0,013 * Stroke [mm]		
CTJ 110 L	215	4,2 + 0,0072 * Stroke [mm]	49 + 0,013 * Stroke [mm]		
CTJ 145 S	180	7,2 + 0,0127 * Stroke [mm]	145 + 0,033 * Stroke [mm]		
CTJ 145 L	240	8,8 + 0,0127 * Stroke [mm]	208 + 0,033 * Stroke [mm]		
CTJ 200 S	265	20,2 + 0,0245 * Stroke [mm]	778 + 0,187 * Stroke [mm]		
CTJ 200 L	405	26,2 + 0,0245 * Stroke [mm]	1210 + 0,187 * Stroke [mm]		

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

CTJ 90 LINEAR UNITS

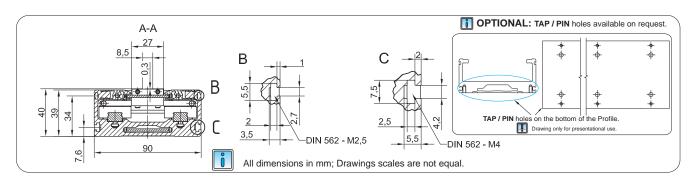

DIMENSIONS


Defining of the linear module length

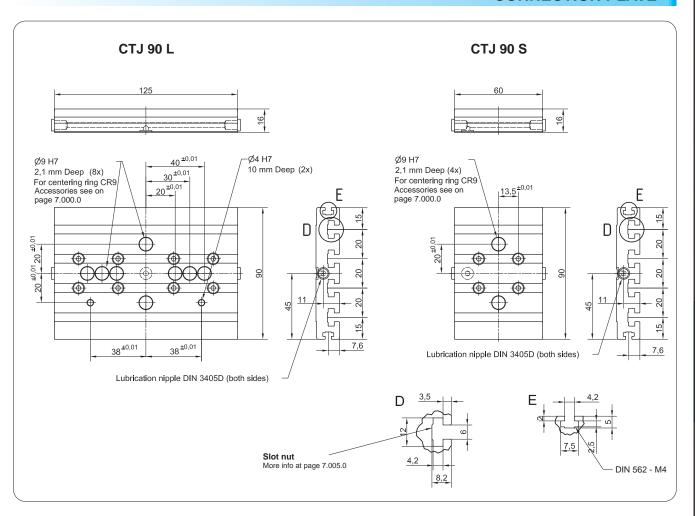
L = Effective stroke + 2 x Safety stroke + Lv + 25 mm

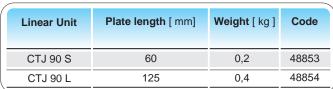
Ltotal= L + 108,5 mm

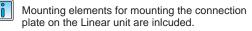
L = Effective stroke + 2 × Safety stroke + A + 127 mm Ltotal = L + 108,5 mm Lv - Long carriage = 156 mm Lv - Short carriage = 102 mm

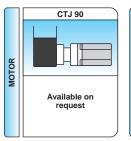


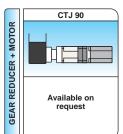
A ≥ 102 mm

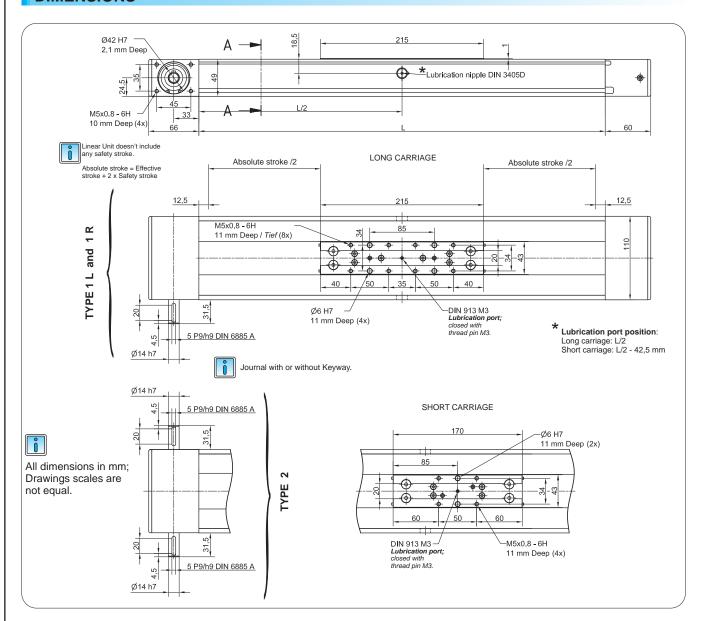

For ordering code please contact us.


LINEAR UNITS CTJ 90

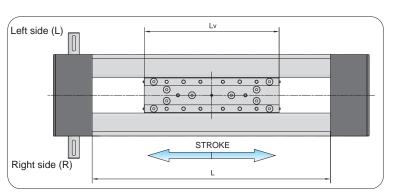

DIMENSIONS

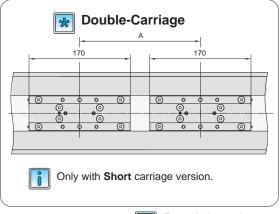



CONNECTION PLATE



CTJ 110 LINEAR UNITS


DIMENSIONS

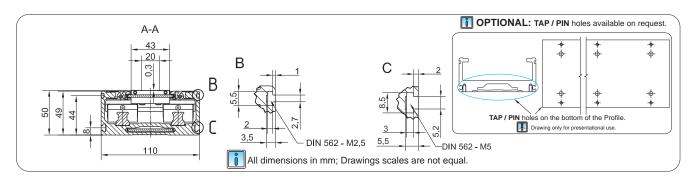

Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + Lv + 25 mm

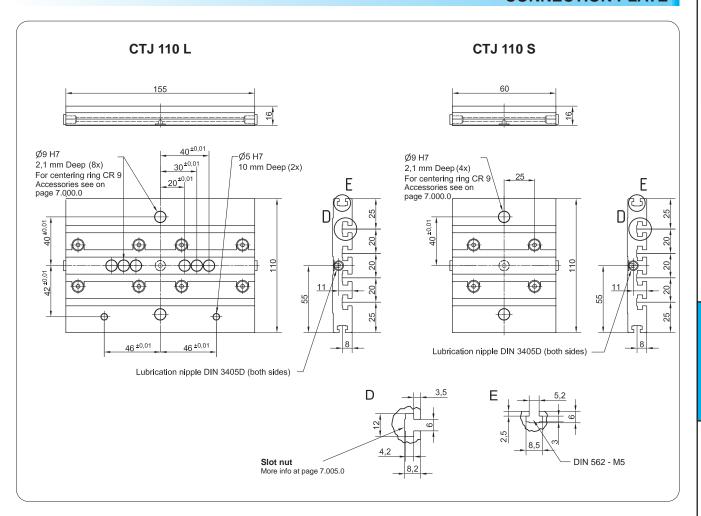
Ltotal = L + 126 mm

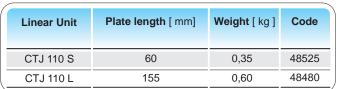
Lv - Long carriage = 215 mm Lv - Short carriage = 170 mm

L = Effective stroke + 2 × Safety stroke + A + 195 mm

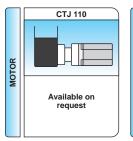

Ltotal = L + 126 mm

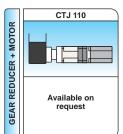
A ≥ 170 mm

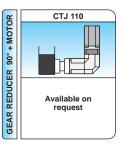

For ordering code please contact us.


LINEAR UNITS CTJ 110

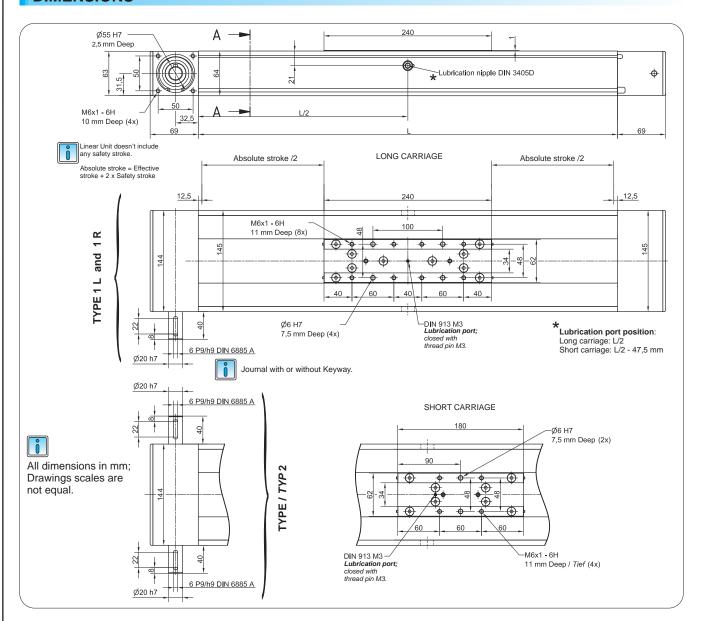
DIMENSIONS



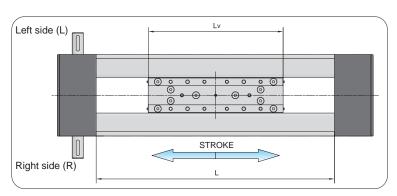

CONNECTION PLATE

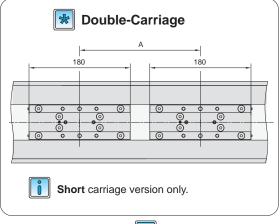


Mounting elements for mounting the connection plate on the Linear unit are inlouded.



CTJ 145 LINEAR UNITS


DIMENSIONS

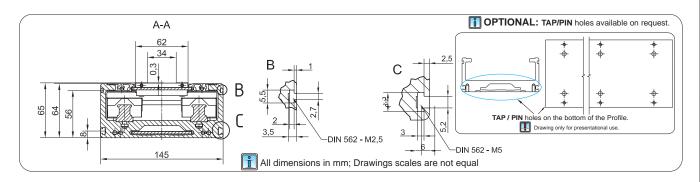

Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + Lv + 25 mm

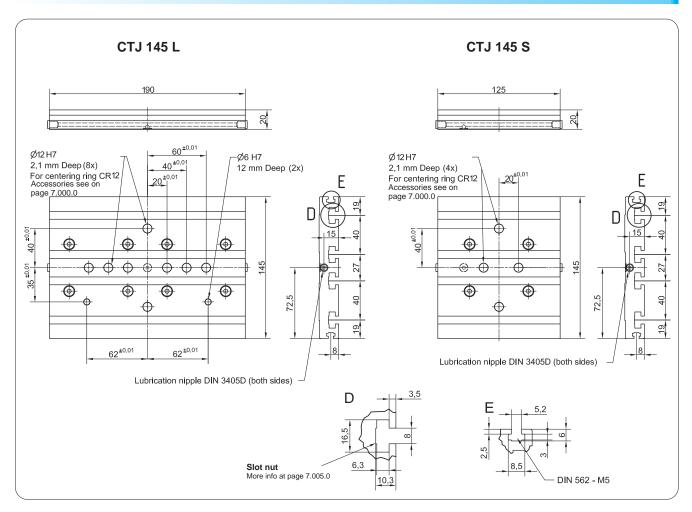
Ltotal = L + 138 mm

Lv - Long carriage = 240 mm Lv - Short carriage = 180 mm

L = Effective stroke + 2 × Safety stroke + A + 205 mm Ltotal = L + 138 mm

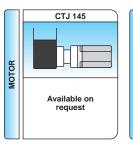

A ≥ 180 mm

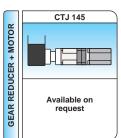
For ordering code please contact us.


杂

LINEAR UNITS CTJ 145

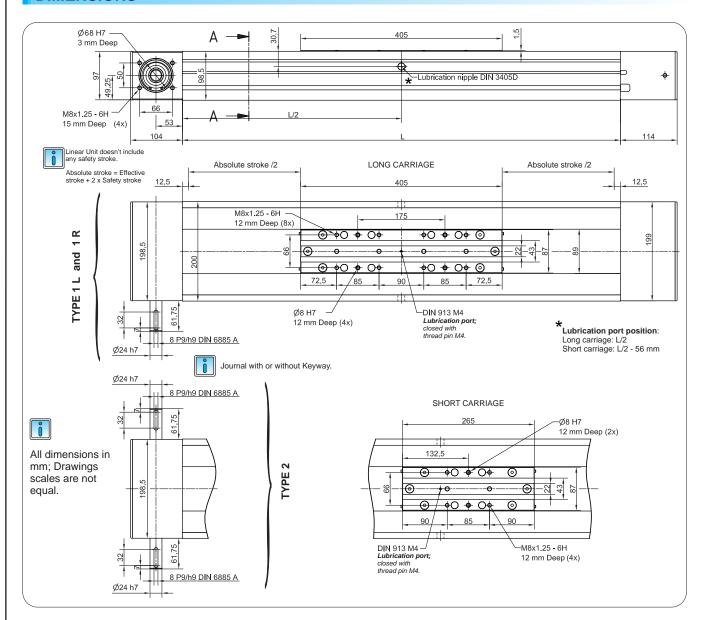
DIMENSIONS



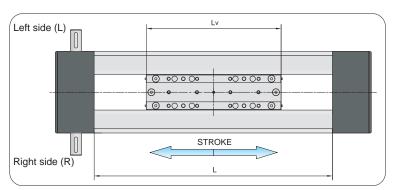

CONNECTION PLATE

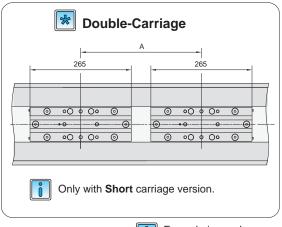
Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 145 S	125	0,8	46776
CTJ 145 L	190	1,3	46775

Mounting elements for mounting the connection plate on the Linear unit are inlcuded.



CTJ 200 LINEAR UNITS


DIMENSIONS

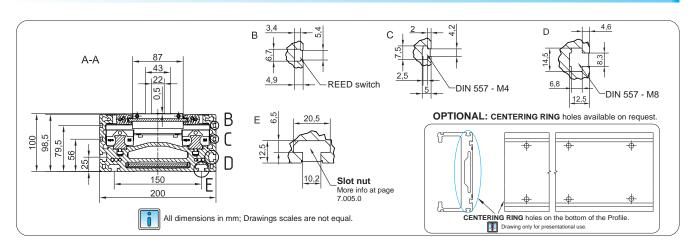

Defining of the linear module length

L = Effective stroke + 2 x Safety stroke + Lv + 25 mm

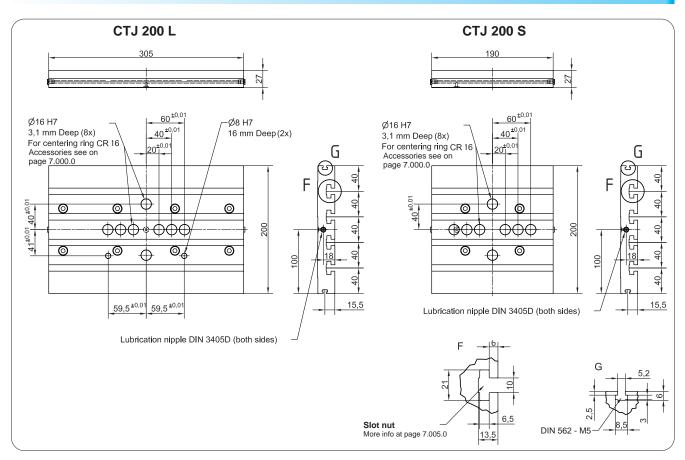
Ltotal= L + 218 mm

Lv - Long carriage = 405 mm Lv - Short carriage = 265 mm

L = Effective stroke + 2 × Safety stroke + A + 290 mm Ltotal = L + 218 mm

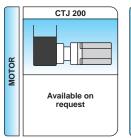

A ≥ 265 mm

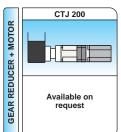
For ordering code please contact us

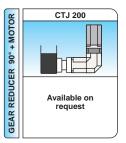

杂

LINEAR UNITS CTJ 200

DIMENSIONS


CONNECTION PLATE




Linear Unit	Plate length [mm]	Weight [kg]	Code
CTJ 200 S	190	2,3	52483
CTJ 200 L	305	3,7	52482

Mounting elements for mounting the connection plate on the Linear unit are inlouded.

Notes	LINEAR UNITS

LINEAR UNITS CTV series

CHARACTERISTICS

The **CTV** series describes Linear Units with a precision ball screw drive and two parallel, integrated, Zerobacklash rail guides. Compact dimensions allow high performance features such as, high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from AL 6063, with two parallel, integrated, Zero-backlash rail guide systems, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

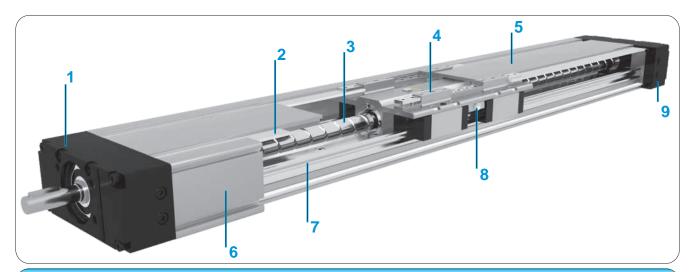
In the Linear Units CTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.

Two parallel circulating antistatic polyurethane sealing strips and an aluminum cover are ensuring to protect all the parts in the profile from dust and other contaminantions.

Different carriage lengths with lubrication port allows for easy re-lubrication of the ball screw and Ball rail guide system and allows the possibility to attach additional accessories. The re-lubrication can also be done through maintenance holes on the side of the Profile.

The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

For the linear units CTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.


i

The aluminium profiles are manufactured according to the medium EN 12020-2 standard

Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

CTV series LINEAR UNITS

STRUCTURAL DESIGN

- 1 Drive block with floating bearing
- 2 Gap-type seal of antistatic PU strip (recirculating)
- 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- 5 Aluminum cover

HOW TO ORDER

- 6 Aluminium profile-Hard anodized
- 7 Two integrated Linear Ball Guideways
- 8 Central lubrication port; both sides
- 9 End block with fixed bearing

110 1610 - ISO7 -1000 Series: CTV Size: 90 110 145 Ball screw: CTV 90: Ø12×5, Ø12×10 CTV 110: Ø16×5, Ø16×10, Ø16×16 CTV 145: Ø20×5, Ø20×10, Ø20× 20 Ball screw tolerance: ISO7 (Standard) ISO5 Ball screw journal: 0: Without keyway 1: With keyway CTV 90 only available without keyway - 0 Absolute stroke (mm): (Absolute stroke = Effective stroke + 2 x Safety stroke)Carriage Version: S: Short L:Long Connection plate:

0 : Without antistatic PU Gap-type seal strip

1 : With antistatic PU Gap-type seal strip (Standard)

2: With Corrosion-resistant protection strip

0: Without **1**: With

Protection cover:

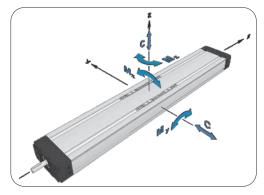
LINEAR UNITS CTV series

TECHNICAL DATA

General technical data for CTV series

Linear Unit	Carriage length	Load ca	pacity	Î Dy	namic mom	ent	Moved mass	* Maximum length	Planar mom	nent of inertia
	Lv [mm]	Dynamic C [N]	Static C0 [N]	Mx [Nm] My [Nm] Mz [Nm]		[kg]	Lmax [mm]	ly [cm ⁴]	Iz [cm ⁴]	
CTV 90 S	35	4610	6920	120	12	25	0,3	750	13,6	112,1
CTV 90 L	100	9230	13840	250	300	300	0,5	. 700		,.
CTV 110 S	39	19800	28200	650	140	290	0,63	4500		400.0
CTV 110 L	124	39600	56400	1300	1680	1680	1,36	1500	28,4	192,6
CTV 145 S	49	34200	48400	1500	320	650	1,19	1800	83,1	656,9
CTV 145 L	149	68400	96800	3010	3420	3420	2,61	. 1000	03,1	656,9

^{*}For lengths over the stated value in the table above please contact us.



Recommended values of loads:

All the data of static and dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fv = 5.0)

Modulus of elasticity

 $E = 70000 \text{ N} / \text{mm}^2$

Ball Screw Drive data

Linear Unit	1 Maximal travel speed			d torque	Lead constant	Ball screw	Max. repeteabili precision		Dynamic axial load capacity	Maximal drive torque without Keyway
			Carriage: S Carriage: L				[mm] STANDARD			
[m/s]		[Nm]	[Nm]	[mm / rev]	[d×l]	ISO7	ISO5	Ca [N]	Ma [Nm]	
CTV 90	CTV 90 38,7·10 ³ ·I/L ² [mm]	≤ 0,49	0,07	0,09	5	12 × 5	± 0,02	± 0,01	5000	2,5
		≤ 0,97	0,06	0,08	10	12 × 10	± 0,02	± 0,01	3800	3,7
		≤ 0,35	0,11	0,13	5	16 × 5	± 0,02	± 0,01	8700	4,3
CTV 110	49,6·10 ³ ·1/L ² [mm]	≤ 0,70	0,12	0,16	10	16 × 10	± 0,02	± 0,01	8700	8,6
		≤ 1,12	0,14	0,18	16	16 × 16	± 0,02	± 0,01	8170	11,9
		≤ 0,28	0,28	0,3	5	20 × 5	± 0,02	± 0,01	14300	10,5
CTV 145	CTV 145 64,2·10 ³ I / L ² [mm]	≤ 0,55	0,26	0,28	10	20 × 10	± 0,02	± 0,01	15400	15,3
\		≤ 1,13	0,24	0,28	20	20 × 20	± 0,02	± 0,01	15400	24,5

For travel speed over the stated value in the table above please contact us

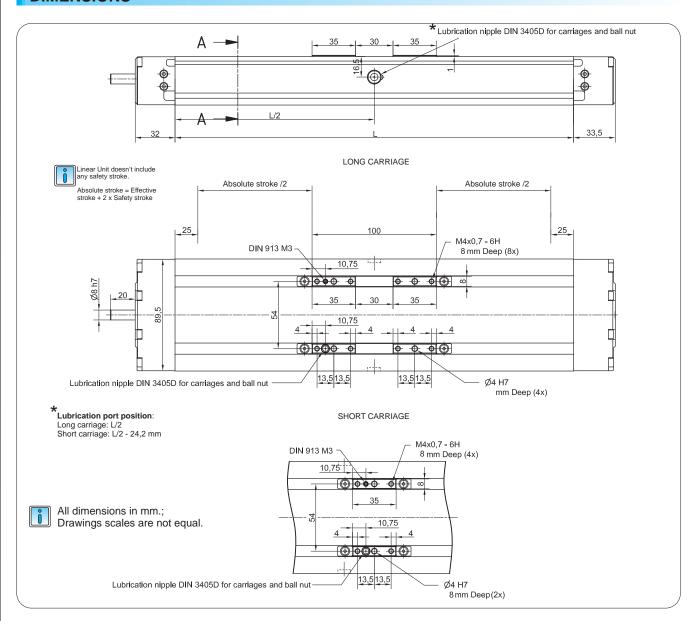
³ For the ball nut with the preload of 2% please contact us

Reduced effective diameter at journal with keyway decreases values of max. drive torque.

Linear Unit	Permissible drive torque (with Keyway)
	Ma [Nm]
CTV 90	-
CTV 110	5,5
CTV 145	11,9

Mass and mass moment of inertia

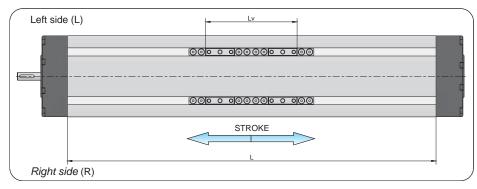
Linear Unit	Carriage length Lv [mm]	Mass of linear unit [kg]	Mass moment of inertia [10 ⁻⁵ kg·m ²]
CTV 90 S	35	1,6 + 0,006·Stroke [mm]	0,3 + 0,002·Stroke [mm]
CTV 90 L	100	2,2 + 0,006·Stroke [mm]	0,4 + 0,002·Stroke [mm]
CTV 110 S	39	3,3 + 0,008·Stroke [mm]	1,1 + 0,005·Stroke [mm]
CTV 110 L	124	4,6 + 0,008·Stroke [mm]	2,0 + 0,005·Stroke [mm]
CTV 145 S	49	5,7 + 0,015·Stroke [mm]	4,2 + 0,013·Stroke [mm]
CTV 145 L	149	8,4 + 0,015·Stroke [mm]	6,1 + 0,013·Stroke [mm]



Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

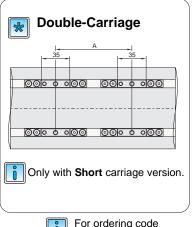
² The stated values are for strokes up to 500mm. No Load Torque value increases with stroke elongation

CTV 90 LINEAR UNITS


DIMENSIONS

Defining of the linear module length

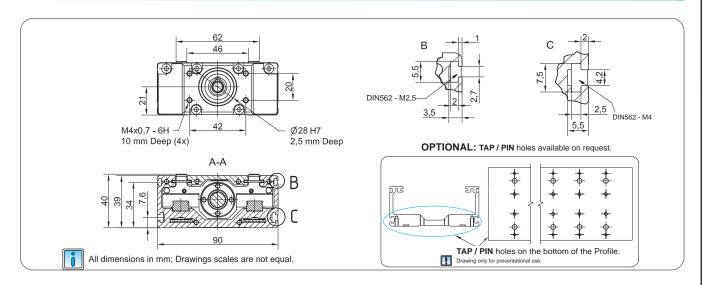
 $L = Effective stroke + 2 \times Safety stroke + Lv + 50 mm$


Ltotal = L + 65,5 mm

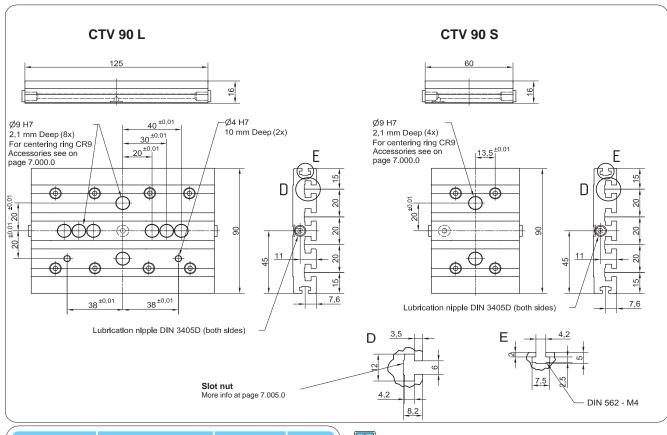
L = Effective stroke + 2 × Safety stroke + A + 85 mm Ltotal = L + 65,5mm

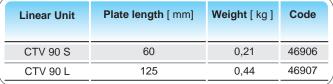
A ≥ 65 mm

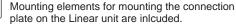
Lv - Long carriage = 100 mm Lv - Short carriage = 35 mm

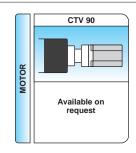


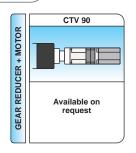
For ordering code please contact us.

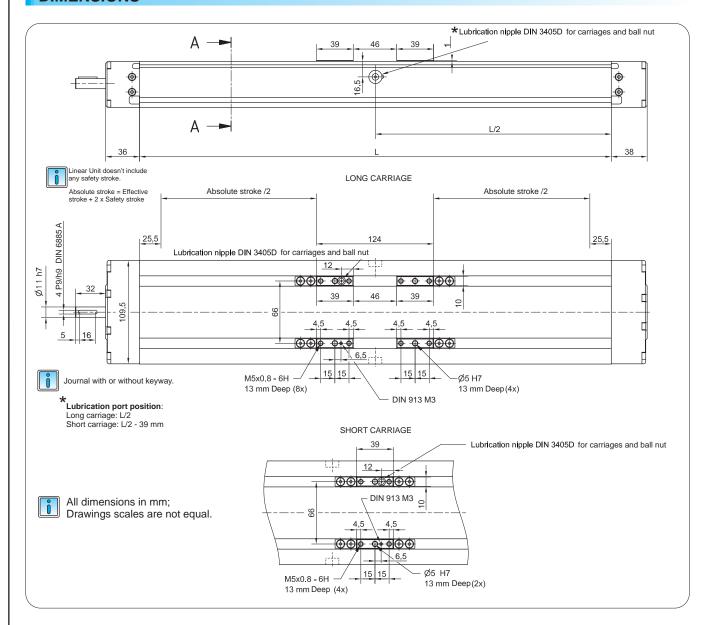

杂


LINEAR UNITS CTV 90

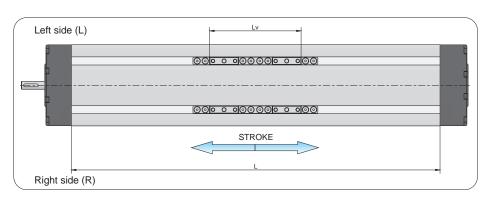

DIMENSIONS


CONNECTION PLATE



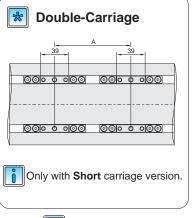


CTV 110 LINEAR UNITS


DIMENSIONS

Defining of the linear module length

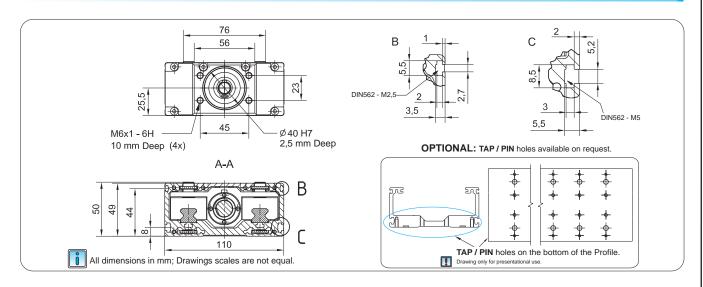
L = Effective stroke + 2 × Safety stroke + Lv + 51 mm


Ltotal = L + 74 mm

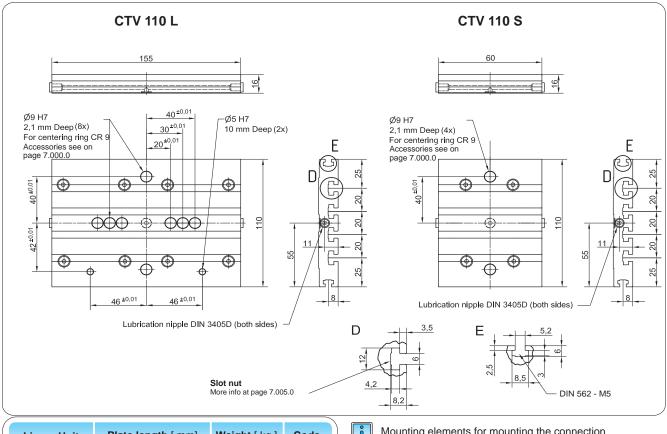
L = Effective stroke + 2 × Safety stroke + A + 90 mm Ltotal = L + 74 mm

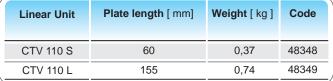
A ≥ 85 mm

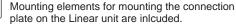
Lv - Long carriage = 124 mm Lv - Short carriage = 39 mm

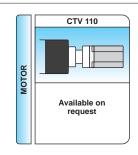


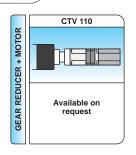
For ordering code please contact us

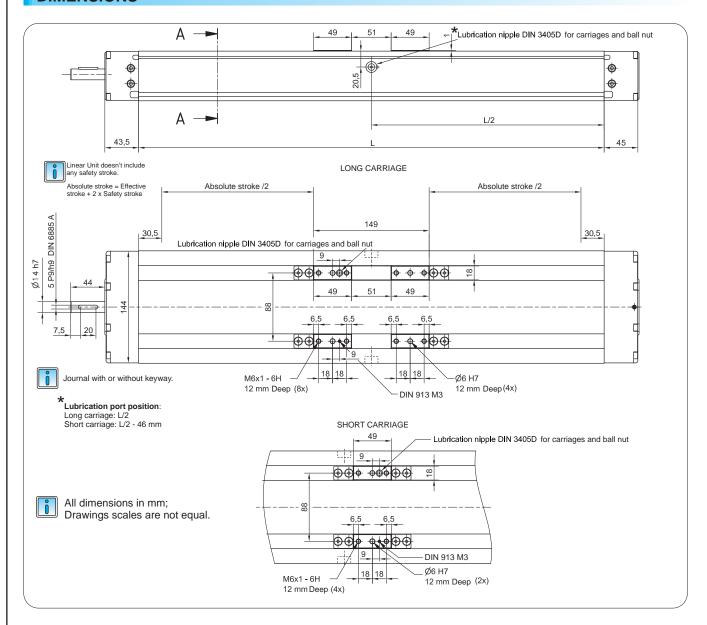

杂


LINEAR UNITS CTV 110

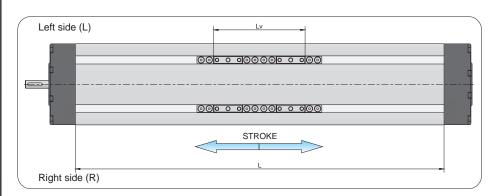

DIMENSIONS


CONNECTION PLATE





CTV 145 LINEAR UNITS


DIMENSIONS

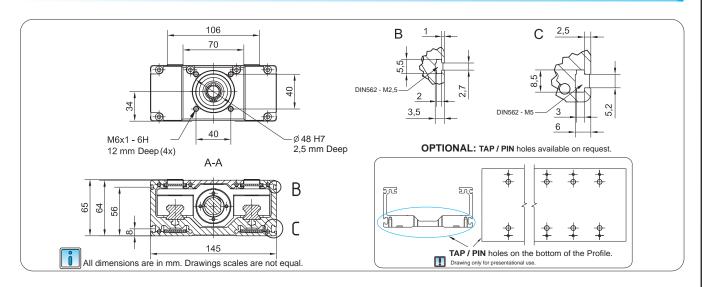
Defining of the linear module length

L = Effective stroke + 2 × Safety stroke + Lv + 61 mm

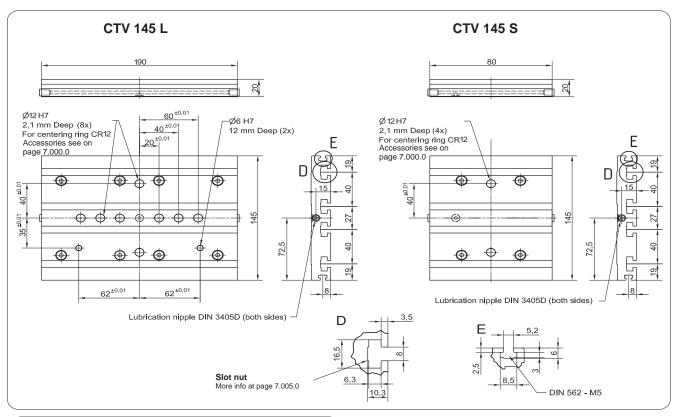
Ltotal = L + 88,5 mm

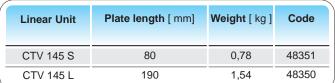
L = Effective stroke + 2 × Safety stroke + A + 110 mm Ltotal = L + 88,5 mm

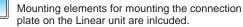
A ≥ 100 mm

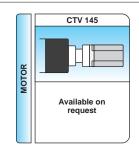

Lv - Long carriage = 149 mm Lv - Short carriage = 49 mm

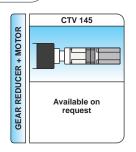
For ordering code please contact us.

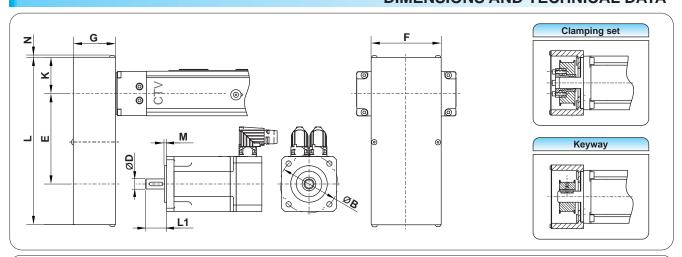

杂


LINEAR UNITS CTV 145

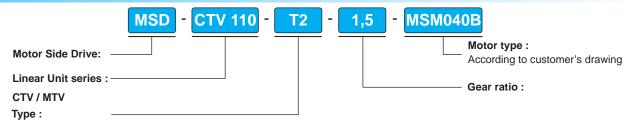

DIMENSIONS


CONNECTION PLATE

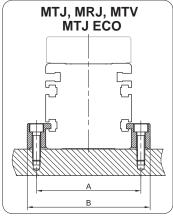


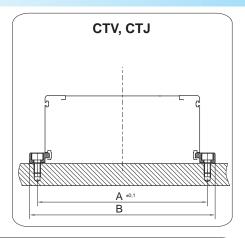


STRUCTURAL DESIGN


DIMENSIONS AND TECHNICAL DATA

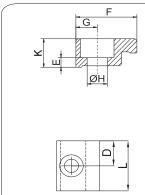
	T					Motor	size lin	nits [n	nm]			Di	mensio	ons [m	m]	
Linear Unit	Туре	Gear ratio	Max. drive torque [Nm]	ØB max		m Clamping set		max	Ø ma Clamping set	ax	Е	F	G	K	L	N
CTV 90		i=1	4			22		39	14	22	100					
C1V 90	11	i=1,5	4	84	4*		25		/	14	102	70	41	31	179	2
CTV 110 / MTV 65	T1	i=1	4	84	4*	22	25	39	14	22 100	100	70	41	31	179	2
CIV 110/WIV 65		i=1,5	4	84	4	/	25	39	/	14	112	70	41	31	190	
CTV 110 / MTV 65	T2	i=1	9	112	/ 1*	24	30 49	40	18	30	145	90	51	43	250	2
		i=1,5	9		-	25			14		139					
CTV 145 / MTV 80	T1	i=1	9	112	4*	24	- 30	49	18	30	145	90	51	43	250	2
CTV 145 / MTV 80		i=1,5	9	112		25	30	73	14	30 -	180	30	31	73	282	
CTV 145 / MTV 80	T2	i=1	12	120	4*	30	35	59	22	40	160	120	61	56	297	2,5
CIV 143 / WIIV 00		i=2	12	120	4"				14	32	158	120	01			
MTV 110	ON REQUEST															

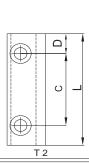

 $^{^{}f \star}$ For a bigger value an additional adapter plate is used

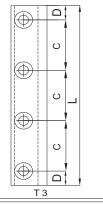

HOW TO ORDER

LINEAR UNITS Accessories

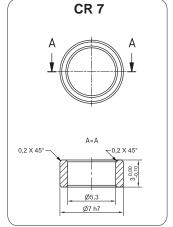
FIXING SYSTEM

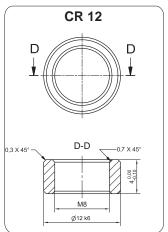


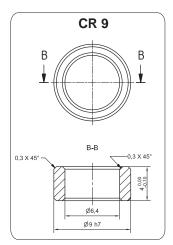

General

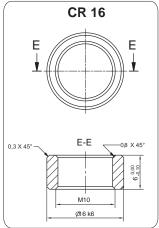

The modules are mounted by using fixtures which are placed in the slot on the side of the profile.

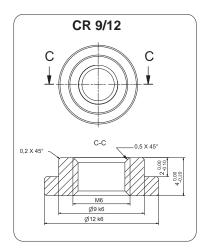
Linear Unit must be mounted by the aluminium profile!


Linear Unit	Туре		Dimensions [mm]										Countersink for	Weight	Code
	Õ	Α	В	С	D	L	Е	F	G	ØΗ	K			[kg]	
MTJ, MRJ 40	T 2	50	64,4	40	7,5	55	2,5	15	7,2	5,5	8	M5	DIN 912	0,014	37139
MTJ, MRJ, MTV 65	T 2	78	93	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 80	T 2	93	108	40	10	60	11,5	20	7,5	6,5	20	M6	DIN 912	0,054	37129
MTJ, MRJ, MTV 110	T 2	130	150	40	10	60	18	30	10	8,5	27	M8	DIN 912	0,082	44375
MTJ ECO 40	T 2	52	66	40	7,5	55	14,5	20	7	5,5	20	M5	DIN 912	0,035	40728
CTV, CTJ 90	T 1	102	112	/	12,5	25	4,5	15	5	4,5	9	M4	DIN 912	0,01	46994
CTV, CTJ 90	T 2	102	112	40	11	62	4,5	15	5	4,5	9	M4	DIN 912	0,02	48636
CTV, CTJ 90	Т3	102	112	20	8,5	77	4,5	15	5	4,5	9	M4	DIN 912	0,025	47163
CTV, CTJ 90	T3	102	112	25	6	87	4,5	15	5	4,5	9	M4	DIN912	0,028	55261
CTV, CTJ 90	Т3	102	112	30	8,5	107	4,5	15	5	4,5	9	M4	DIN912	0,031	55638
CTV, CTJ 110	T 1	126	140	/	12,5	25	3,4	20	7	6,6	10	M6	DIN 912	0,01	48642
CTV, CTJ 110	T 2	126	140	40	11	62	3,4	20	7	6,6	10	M6	DIN 912	0,03	48643
CTV, CTJ 110	Т3	126	140	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 110	T 3	126	140	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 110	T3	126	140	40	11	142	3,4	20	7	6,6	10	M6	DIN912	0,056	55260
CTV, CTJ 145	T 1	161	175	/	12,5	25	4,5	20	7	6,5	10	M6	DIN 912	0,01	48642
CTV, CTJ 145	T 2	161	175	40	11	62	4,5	20	7	6,5	10	M6	DIN 912	0,03	48643
CTV, CTJ 145	Т3	161	175	20	8,5	77	4,5	20	7	5,5	10	M5	DIN 912	0,03	48640
CTV, CTJ 145	Т3	161	175	30	8,5	107	4,5	20	7	5,5	10	M5	DIN 912	0,045	46995
CTV, CTJ 145	Т3	126	140	40	11	142	3,4	20	7	6,6	10	M6	DIN 912	0,056	55260
CTJ 200	T 2	222	240	40	19	78	14,8	29	9	8,5	27,5	M8	DIN 912	0,110	53049
CTJ 200	T 2	222	240	50	19	88	14,8	29	9	8,5	27,5	M8	DIN 912	0,120	53050
CTJ 200	T 2	222	240	70	19	108	16,3	29	9	8,5	27,5	M8	DIN 912	0,160	53051




Recommended number of clamping fixtures: For T1 is recommended 6 pcs. per meter on each side, for T2 is recommended 3 pcs. per meter on each side.


Accessories LINEAR UNITS


CENTERING RINGS

Туре	Compatible with	Code
CR 7	MTJ/MRJ/MTJZ/MTV: 40, 65	23332
CR 9	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110	23331
CR 9/12	MTJ/MRJ /MTV/MTJZ: 80,110 CTV/CTJ: 90, 110, 145	48885
CR 12	CTV/CTJ: 145	49049
CR 16	CTJ 200	53023

SLOT NUTS

LINEAR UNITS - PROFILE

DIN562

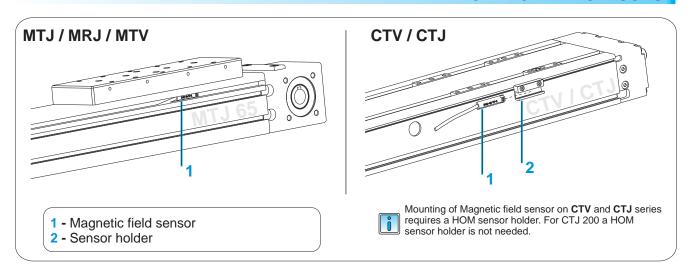
DIN557

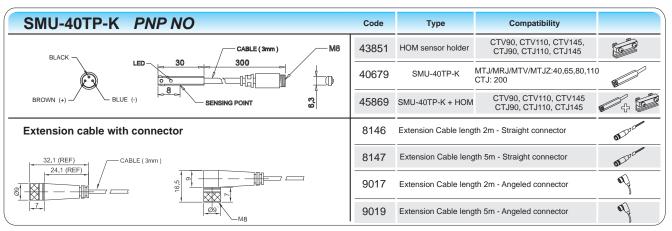
Slot Nut

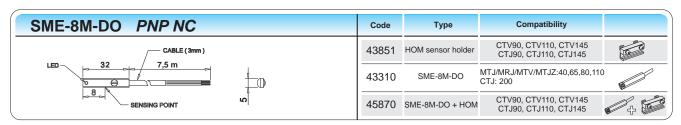
* - right ordering CODE

CODE	NUT TYPE	MTJ/MRJ 40	MTJ/MRJ/ MTV/MTJZ 65	MTJ/MRJ/ MTV/MTJZ 80	MTJ/MRJ/ MTV /MTJZ 110	MTJ 40 ECO	CTV 90 CTJ 90	CTV 110 CTJ 110	CTV 145 CTJ 145	CTJ 200
41609	DIN562 - M2,5						Х	Х	Х	
40682	DIN562 - M4	X - *57017	Х	Х			Х			
40768	DIN562 - M5							Х	Х	
40769	DIN557 - M5		Х	Х						
44451	DIN557 - M8				X					Χ
5746	Slot Nut M6					Х				
5551	Slot Nut T-10-M8									Х
5552	Slot Nut T-10-M6									Х
5553	Slot Nut T-10-M5									Х
5570	Slot Nut T-10-M8	L=90								X

LINEAR UNITS - CONNECTION PLATES

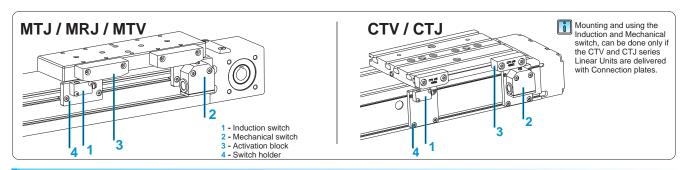

$\overline{}$		
CODE	NUT TYPE	CTJ 200
5551	Slot Nut T-10-M8	Х
5552	Slot Nut T-10-M6	Х
5553	Slot Nut T-10-M5	Χ
5570	Slot Nut T-10-M8 L=90	X

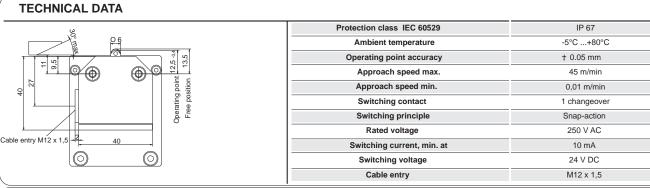

CODE	NUT TYPE	CTV 145 CTJ 145
5704	Slot Nut 8LM4	Χ
5703	Slot Nut 8LM5	Х
5702	Slot Nut 8LM6	Χ
5701	Slot Nut 8LM8	X


IDENT	NUT TYPE	CTV 110 CTJ 110	CTV 90 CTJ 90
48887	Slot Nut 6LM4	Х	Х
48888	Slot Nut 6LM5	Х	X

LINEAR UNITS Accessories

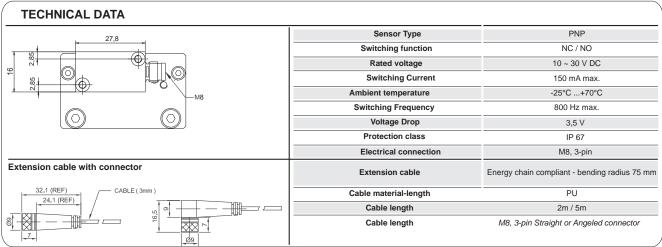
MAGNETIC FIELD SENSORS





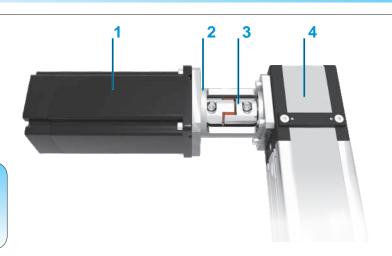
TECHNICAL DATA	SMU-40TP-K PNP NO	SME-8M PNP NC					
Sensor Type	PNP	Contacting, Bipolar					
Switching function	NO	NČ					
Operating voltage	10 ~ 30 V DC	5 ~ 30 V DC					
Switching Current	100 mA max.	80 mA max.					
Switching capacity	6 W max.	2,4 W max.					
Voltage Drop	1,5 V max.	3,5 V max.					
Current Consumption	20 mA / 24 V DC max.	20 mA / 24 V DC max.					
Switching Frequency	1000 Hz	/					
Ambient temperature	-10 do +70°C	-10 do +70°C					
Shock/Vibration	50 G / 9 G	50 G / 9 G					
Protection class	IP 67	IP 65, IP 67					
LED indicator	Yellow	Yellow					
Electrical connection	M8, 3-pin	Open end					
Cable material-length	PU - 0,3 m	PU- 7,5 m					
•		Energy chain compliant-bending radius 75 mm					
Extension cable	Energy chain compliant	/					

Accessories LINEAR UNITS



MS- Mechanical switch

ORDERIN	MTJ/MRJ 40	MTJZ 40	MTJ/MRJ/MTV 65 MTJZ 65/80	MTJ/MRJ/ MTV 80	MTJ/MRJ/ MTV 110	MTJZ 110	MTJ ECO 40	CTV/CTJ 90	CTV/CTJ 110	CTV/CTJ 145	CTJ 200	
+ 2x	Activation block with fixing screws	43243	52022	43247	43256	47827	63702	49030	49032	49031	40652	40652
	Mechanical switch only		47921									
2x + 2x + 2x +	Mechanical switch with mounting elements	40683		40687	40689	47826	63703	49035	49034	49033	47939	53055


IS-Inductive switch

ORDERING CODES	MTJ/MRJ 40	MTJZ 40	MTJ/MRJ/MTV 65 MTJZ 65/80	MTJ/MRJ/ MTV 80	MTJ/MRJ/ MTV 110	MTJZ 110	MTJ ECO 40	CTV/CTJ 90	CTV/CTJ 110	CTV/CTJ 145	CTJ 200
+ 2x Activation block with fixing screws	43243	52022	43247	43256	47827	63702	49030	49032	49031	40652	40652
PNP NO Inductive switch only	,				40671						
2x + + 2x + 2x + PNP NO Ind. switch with mounting elements	406	80	48026	43233	48047	63705	45105	49039	49038	48058	53054
PNP NC Inductive switch only	/				43570						
2x + 2x + 2x + PNP NC Ind. switch with mounting elements	488	51	40685	47848	47989	63704	45103	49037	49036	47850	53052
Extension Cable length 2m -	Straight con	nector							814	6	
Extension Cable length 5m -	Straight con	nector							814	7	
Extension Cable length 2m - A	Angeled con	nector							901	7	
Extension Cable length 5m - A	Angeled con	nector							901	9	

LINEAR UNITS Accessories

MOTOR ADAPTER WITH COUPLING

- 1 Motor
- 2 Motor adapter
- 3 Coupling
- 4 Linear Unit

VK	- CTV11	0 - SMB	60 - GE	SM14

Motor adapter :

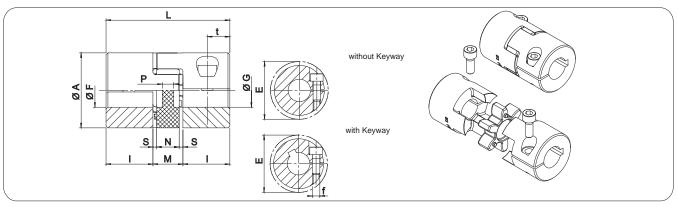
Linear Unit:

Motor type: According to customer's specification

Coupling type:

See page 7.020.0 or According to customer's specification

COUPLINGS



Coupling:

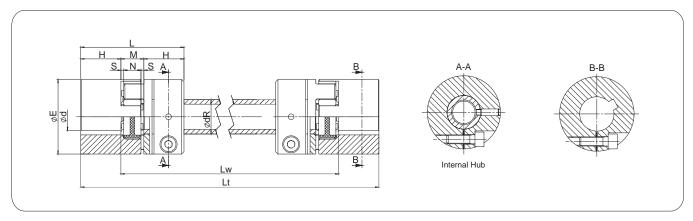
Coupling type / size: 7, 9, 14, 19/24, 24/28, 28/38, 38/45

Option: C: with keyway Leave blank: without keyway

Hole diameter

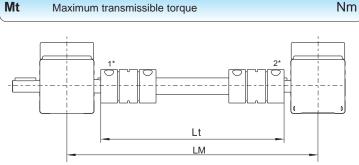
Size	* T _{KN} Nominal	*T _{Kmax} (Nm)	Ms (Nm)		Hub	n _{max} (min ⁻¹)	A (mm)	G (mm)	L (mm)	l (mm)	M (mm)	N (mm)	S (mm)	P (mm)	t (mm)	E (mm)
	(Nm)	(MIII)	(MIII)	W (Kg)	J (Kgm²)	(111111)	(11111)	(11111)	(11111)	(11111)	(11111)	(11111)	(11111)	(11111)	(11111)	(11111)
7	2	4	0,35	0,003	0,085 x 10 ⁻⁶	40.000	14	-	22	7	8	6	1,0	6	4	15,0
9	5	10	0,75	0,007	0,42 x 10 ⁻⁶	28.000	20	7,2	30	10	10	8	1,0	2	5	23,4
14	12,5	25	1,4	0,018	2,6 x 10 ⁻⁶	19.000	30	10,5	35	11	13	10	1,5	2	5,5	32,2
19/24	17	34	11	0,071	18,1 x 10 ⁻⁶	14.000	40	18	66	25	16	12	2,0	3,5	12	45,7
24/28	60	120	11	0,156	74,9 x 10 ⁻⁶	10.600	55	27	78	30	18	14	2,0	4	12	56,4
28/38	160	320	25	0,240	163,9 x 10 ⁻⁶	8.500	65	30	90	35	20	15	2,5	5,2	13,5	72,6
38/45	325	650	25	0,440	465,5 x 10 ⁻⁶	7.100	80	38	114	45	24	18	3,0	5,6	16	83,3

The values of nominal TKN and max. TKmax transmissible torque in the upper table are valid for coupling with Keyway!


Accessories LINEAR UNITS

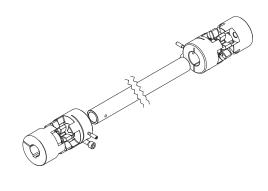
Size					R	ecomn	nended	l coupli	ing bo	re dian	n. and	Transm	issible	Torqu	e (Nm)	- valid	l for sh	aft tole	erances	s k6 wi	thout k	Keyway	,		
	04	o 5	o 6	o 7	08	o 9	o 10	o 11	o 12	014	o 15	o 16	o 19	o 20	o 22	o 24	o 25	o 28	o 30	o 32	o 35	o 38	o 40	042	o 45
7	0,7	0,8	1	1,1																					
9	1,1	1,4	1,7	1,9	2,2	2,5	2,8	3																	
14			2,5	2,9	3,3	3,7	4,1	4,6	5	5,8	6,2	6,6													
19/24							23	25	27	32	34	36	43	45											
24/28							23	25	27	32	34	36	43	45	50	54	57	63							
28/38										58	62	66	79	83	91	100	104	116	124	133	145				
38/45											62	66	79	83	91	100	104	116	124	133	145	158	166	174	187

Ms	Screw tightening torque	Nm
W	Weight	Kg
J	Coupling moment of inertia	kgm ²
nmax	Maximum rpm	min ⁻¹
TKN	Coupling nominal torque	Nm
T _{kmax}	Coupling maximum torque	Nm


The operating temperature range for the coupling is between -30 and +90°C

SYNCHRONISATION SHAFT OSL

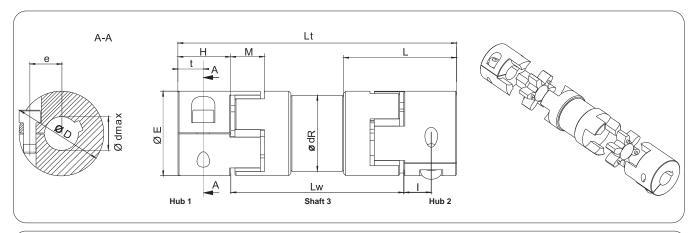
Size	Inter	rnal Hub	E (mm)	H (mm)	ød min	ød max	M (mm)	N (mm)	S (mm)	L (mm)	Lw min	Lt	dR x thickness
	Ms (Nm)	M⊤ (Nm)	(11111)	(111111)	(mm)	(mm)	(11111)	(11111)	(11111)	(11111)	(mm)	(mm)	(mm)
14	1,4	6	30	11	4	16	13	10	1,5	35	48		14 x 2,0
19/24	10	35	40	25	6	24	16	12	2	66	82	lest	20 x 3,0
24/28	10	45	55	30	8	28	18	14	2	78	96	Sedi	25 x 2,5
28/38	25	108	65	35	10	38	20	15	2,5	90	110	on	35 x 5,0
38/45	25	125	80	45	12	45	24	18	3	114	138		40 x 5,0


 Nm

* - see page 7.030.0 for more info

Screw tightening torque

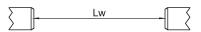
For longer distances Bearing Supports needed. Please contact us.

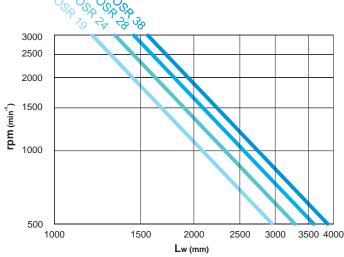


Ms

LINEAR UNITS Accessories

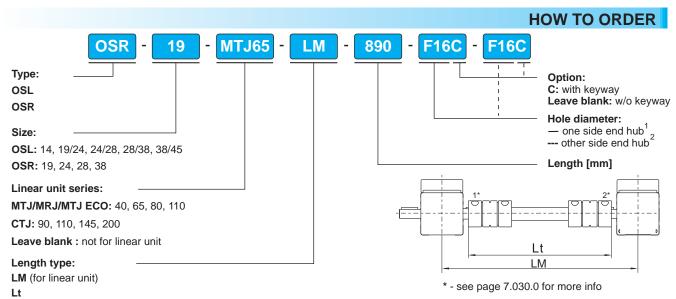
SYNCHRONISATION SHAFT OSR



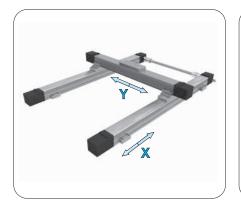

Size	d min	d max	Ms	Moment of	nertia(10³kgm²) with	n d _{max} Hub1	C _T (Nm/rad)	E (mm)	H	(mm)	L (mm)	M (mm)	Lw	LT (mm)	D (mm)	t (mm)	e (*****)	dR
	(mm)	(mm)	(Nm)	Hub 1 J ₁	Hub 2 J ₂	Shaft 3 J ₃	(Nm/rad)	(mm)	(mm)	(mm)	(mm)	(mm)	min (mm)	(mm)	(mm)	(mm)	(mm)	(mm)
19	10	20	10	0,02002	0,01304	0,340	3003	40	25	13	53,5	16	82	, t	47	12	15	36
24	10	28	10	0,07625	0,04481	0,0697	639	55	30	16	63	18	96	dne	57	14	20,8	45
28	14	35	25	0,17629	0,1095	1,243	10936	65	35	20	67	20	110	n re	73	15	25	55
38	15	45	25	0,50385	0,2572	3,072	27114	80	45	25	83,5	24	138	-	84	20	30	68

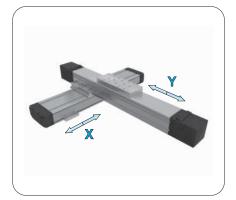
Ms	Screw tightening torque	Nm
CT	Torsional rigidity	Nm/rad
J	Coupling moment of inertia	kgm ²

INSTALLATION


The overall length Lt is best determined as the distance between shaft ends - length Lw plus 2x dimension H.

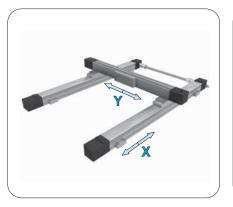
SELECTION DIAGRAM

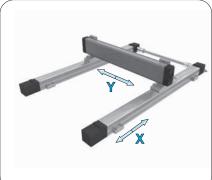

Ideal execution for long distance shat connections. Torque transmission is zero backlash.Designed for length up to 3m without bearing support (depending on rotation speed).


Accessories LINEAR UNITS

X-Y CONNECTION ELEMENTS

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° Y Axis = 0°

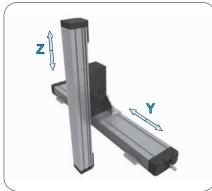


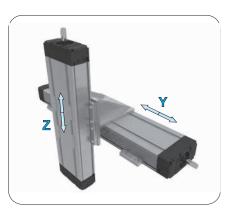


					Y-Axis				
X-Axis	MTJ, MRJ 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTJ 200
MTJ, MRJ 40	CP M40 0 M40 0	CP M40 0 M65 0			CP M40 0 E40 0	CP M40 0 C90 0			
MTJ, MRJ, MTV 65	CP M65 0 M40 0	CP M65 0 M65 0	CP M65 0 M80 0		CP M65 0 E40 0	CP M65 0 C90 0	CP M65 0 C110 0		
MTJ, MRJ, MTV 80		CP M80 0 M65 0	CP M80 0 M80 0	CP M80 0 M110 0		CP M80 0 C90 0	CP M80 0 C110 0	CP M80 0 C145 0	
MTJ, MRJ, MTV 110		CP M110 0 M65 0	CP M110 0 M80 0	CP M110 0 M110 0			CP M110 0 C110 0	CP M110 0 C145 0	CP M110 0 C200 0
MTJ 40 ECO	CP E40 0 M40 0	CP E40 0 M65 0	CP E40 0 M80 0		CP E40 0 E40 0	CP E40 0 C90 0	CP E40 0 C110 0		
CTV, CTJ 90	CP C90 0 M40 0	CP C90 0 M65 0				CP C90 0 C90 0	CP C90 0 C110 0		
CTV, CTJ 110	CP C110 0 M40 0	CP C110 0 M65 0	CP C110 0 M80 0			CP C110 0 C90 0	CP C110 0 C110 0	CP C110 0 C145 0	
CTV, CTJ 145		CP C145 0 M65 0	CP C145 0 M80 0	CP C145 0 M110 0		CP C145 0 C90 0	CP C145 0 C110 0	CP C145 0 C145 0	
CTJ 200			CP C200 0 M80 0	CP C200 0 M110 0			CP C200 0 C110 0	CP C200 0 C145 0	CP C200 0 C200 0

X- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° Y Axis = 90°

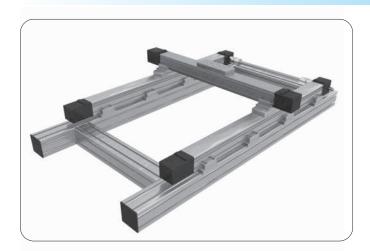


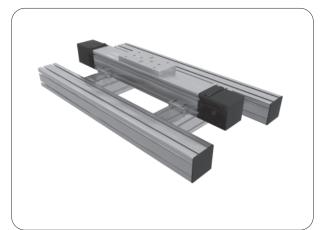

					Y-Axis				
X-Axis	MTJ, MRJ 40	MTJ, MRJ, MTV 65	MTJ, MRJ, MTV 80	MTJ, MRJ, MTV 110	MTJ 40 ECO	CTV, CTJ 90	CTV, CTJ 110	CTV, CTJ 145	CTJ 200
MTJ, MRJ 40	CP M40 0 M40 90	CP M40 0 M65 90			CP M40 0 E40 90	CP M40 0 C90 90			
MTJ, MRJ, MTV 65	CP M65 0 M40 90	CP M65 0 M65 90	CP M65 0 M80 90			CP M65 0 C90 90	CP M65 0 C110 90		
MTJ, MRJ, MTV 80		CP M80 0 M65 90	CP M80 0 M80 90	CP M80 0 M110 90		CP M80 0 C90 90	CP M80 0 C110 90	CP M80 0 C145 90	
MTJ, MRJ, MTV 110		CP M110 0 M65 90	CP M110 0 M80 90	CP M110 0 M110 90			CP M110 0 C110 90	CP M110 0 C145 90	CP M110 0 C200 90
MTJ 40 ECO	CP E40 0 M40 90	CP E40 0 M65 90	CP E40 0 M80 90		CP E40 0 E40 90	CP E40 0 C90 90	CP E40 0 C110 90		
CTV, CTJ 90	CP C90 0 M40 90	CP C90 0 M65 90				CP C90 0 C90 90			
CTV, CTJ 110	CP C110 0 M40 90	CP C110 0 M65 90	CP C110 0 M80 90			CP C110 0 C90 90	CP C110 0 C110 90		
CTV, CTJ 145		CP C145 0 M65 90	CP C145 0 M80 90	CP C145 0 M110 90		CP C145 0 C90 90	CP C145 0 C110 90	CP C145 0 C145 90	
CTJ 200			CP C200 0 M80 90	CP C200 0 M110 90			CP C200 0 C110 90	CP C200 0 C145 90	CP C200 0 C200 90


LINEAR UNITS Accessories

X-Y CONNECTION ELEMENTS

Y- Axis MTJ, MRJ, MTV, MTJ ECO, CTV = 0° Z-Axis = 90°



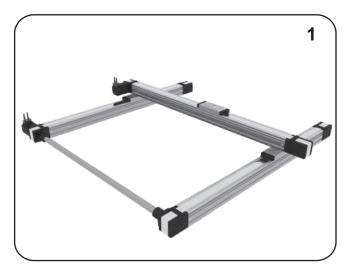


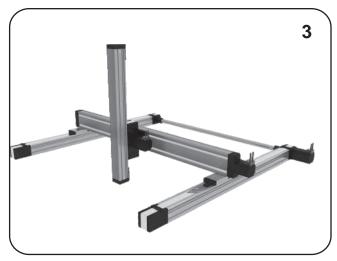
					2	Z-Axis				
Y-Axis	MTJZ 40	MTJZ 65	MTJZ 80	MTJZ 110	MTV 65	MTV 80	MTV 110	CTV 90	CTV 110	CTV 145
MTJ, MRJ 40	CP M40 0 Z40									
MTJ, MRJ, MTV 65	CP M65 0 Z40	CP M65 0 Z65			CP M65 0 ZM65					
MTJ, MRJ, MTV 80	CP M80 0 Z40	CP M80 0 Z65	CP M80 0 Z80		CP M80 0 ZM65	CP M80 0 ZM80				
MTJ, MRJ, MTV 110		CP M110 0 Z65	CP M110 0 Z80	CP M110 0 Z80	CP M110 0 ZM65	CP M110 0 ZM80	CP M110 0 ZM110			
MTJ 40 ECO	CP E40 0 Z40							-		
CTV, CTJ 90	CP C90 0 Z40	CP C90 0 Z65						CP C90 0 ZC90		
CTV, CTJ 110	CP C110 0 Z40	CP C110 0 Z65	CP C110 0 Z80		CP C110 0 ZM65	CP C110 0 ZM80		CP C110 0 ZC90	CP C110 0 ZC110	
CTV, CTJ 145	CP C145 0 Z40	CP C145 0 Z65	CP C145 0 Z80	CP C145 0 Z110	CP C145 0 ZM65	CP C145 0 ZM80	CP C145 0 ZM110	CP C145 0 ZC90	CP C145 0 ZC110	CP C145 0 ZC145
CTJ 200			CP C200 0 Z80	CP C200 0 Z110		CP C200 0 ZM80	CP C200 0 ZM110		CP C200 0 ZC110	CP C200 0 ZC145

CONNECTION ELEMENTS FOR CUNSTRICTIONS WITH ALU PROFILES

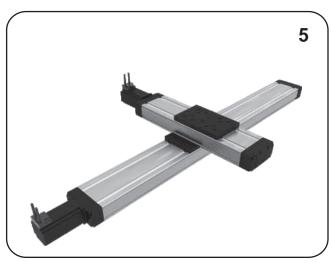
Ů

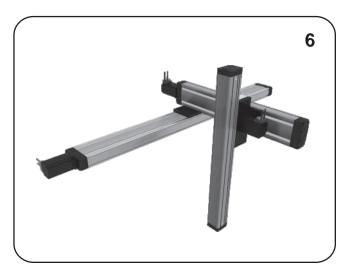
Linear Unit must be mounted by the aluminium profile and not at the end blocks!

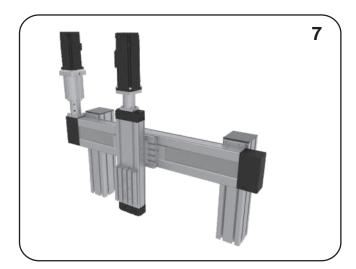

For more details about Alu profiles see PROFILE TECHNIC catalogue.

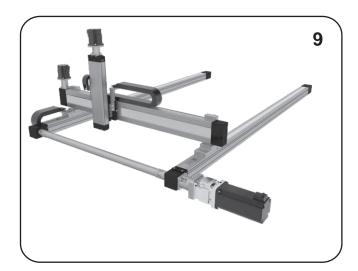

Accessories LINEAR UNITS

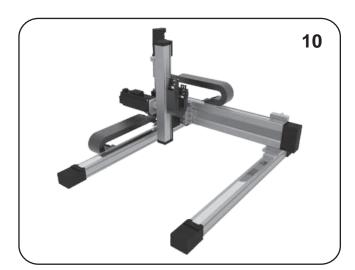
MULTI-AXIS SYSTEMS


We offer all neccessary fittings including brackets, clamping fixtures and adapter plates in order to build multi-axis systems. Beside standard elements we supply also custom fixing and connection elements manufactured in our workshop.







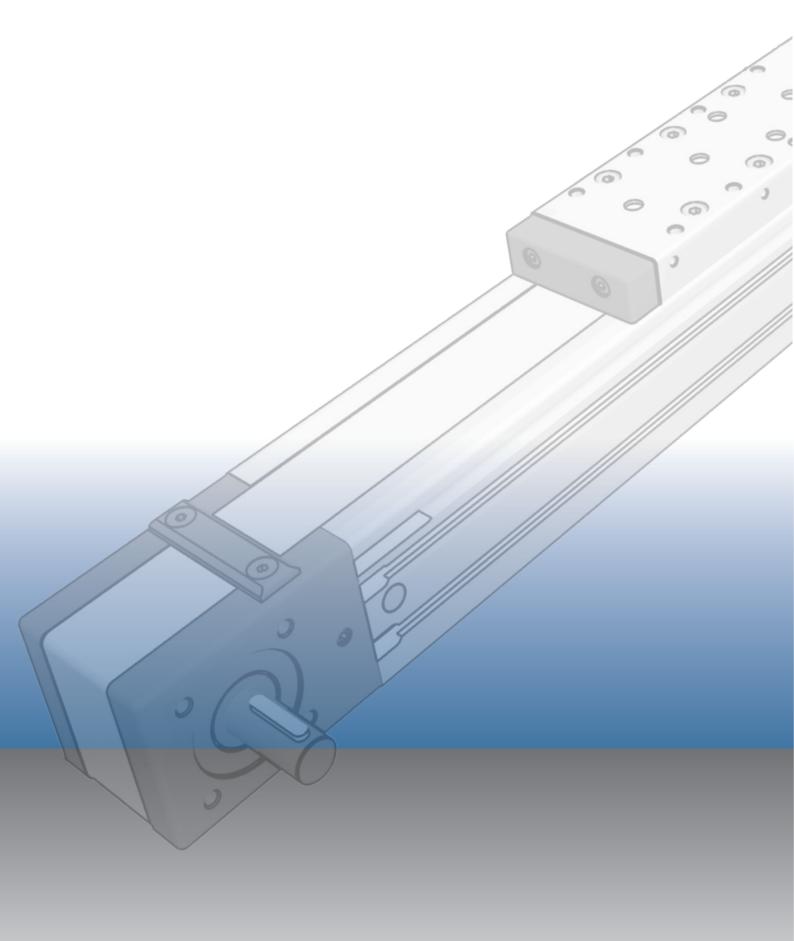

LINEAR UNITS Accessories

MULTI-AXIS SYSTEMS

Notes

Notes	LINEAR UNITS	

The calculation program "LINEAR UNITS SELECTION" enables fast and simple selection of a suitable linear axis based on your application data. As a result of the interpretation of this data, the program provides you with diverse information, e.g. driving torque, rotation speed, maximal process speed, durability and other information about a particular product. So contact us!



Our modern machinery, for example, comprises several CNC automatic lathes with power tools, a 4-axis machining centre with a highly modern, fully automated pallet changing system and a CNC machining centre with a travel distance of 3.5m, where our linear-axis profiles are machined.

Wenzel's 6m-long measuring machine enables precise control of straightness, parallelism, angle tolerance and other dimensional tolerances of linear axis profiles, before and after processing, as well as the creation of measurement protocols. Our diverse manufactured components can also be measured here.

UNIMOTION Hypex d.o.o. Alpska cesta 43, 4248 Lesce Slovenija

Tel: +386 (0)4 5318700 Fax: +386 (0)4 5318740 www.unimotion.eu email: sales@unimotion.eu