
����������	���
���
���������������	���
���
���������������	���
���
���������������	���
���
���������

����

����

� � � ����
� �
� � � ����
� �
� � � ����
� �
� � � ����
� �
����

����

����

����

� � � ��
� � � ��� ��
� � ���
� � �� � �� � � ��
� � � ��� ��
� � ���
� � �� � �� � � ��
� � � ��� ��
� � ���
� � �� � �� � � ��
� � � ��� ��
� � ���
� � �� � � ����

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 1

Contents:
Foreword: 2
Interface overview: 3

Methods: 3
Properties: 3

Method Descriptions: 4
OpenPort 4
ClosePort 4
ReadParameter 5
ReadParameterAlternate 6
WriteParameter 7
WriteParameterAlternate 8
GetParamNumFromName 9
GetLastError 10
GetLastErrorStr 10
GetParameterType 11
Reset 12
ResetWait 12
WriteToFlash 13
WriteToFlashWait 13
SetFactors 14
SetFactorsBig 15
SetMACType 16
GetModuleType 16
NanoGet 17
NanoPut 17
NanoProgram 18
NanoWrite 18
NanoStop 18
NanoReset 19
NanoResetWait 19
NanoDebug 20

Installation 21
Adding MacComm OCX to the program 22

Visual Basic 6 22
Visual C++ 6 22
Visual .NET 22
Borland C++ Builder 6.0 22
LabVIEW 7.0 22

Custom Errors: 23

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 2

Foreword:

MacComm OCX has been developed to provide an easy way of interfacing to the MAC motors
from various Windows applications.

To use the MacComm OCX you only need a development environment that supports ActiveX
components (previously called OLE controls)

This includes: MS Excel, MS Visual Studio, Borland C++ Builder, Borland Delphi, LabView,
and many more.

By using this OCX you do not need to worry about setting up the COM port settings such as:
baud rate, start bits, stop bits, databits, parity, CTS, RTS etc.
These settings are handled automatically by the OCX. All you need is to tell what COM port is
used and what addresses the MAC motors are connected.

The MAC motor address is only required when more than one MAC motor is connected to the
same serial cable. Otherwise address 255 is a broadcast address, where the MAC motor will react
regardless of configured address.

First you need to add the OCX to your project (See Installation instructions later in this manual)
To initialize the OCX the following are required:

• Setting “ComPort” to wanted COM port number
• Calling SetMACType to set MAC type (only required for MAC 400/800)
• Calling “OpenPort”

Now it is possible to use the various commands for setting/retrieving values:

• Call ReadParameterAlternate to read a value
• Call WriteParameterAlternate to set a value
• Etc.

To close the communications do the following:

• Call ClosePort

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 3

Interface overview:

Methods:

OpenPort()
ClosePort()
ReadParameter([in] Address, [in] ParamNum, [out] Value)
ReadParameterAlternate([in] Address, [in] ParamNum, [out] Value)
WriteParameter([in] Address, [in] ParamNum, [in] Value)
WriteParameterAlternate([in] Address, [in] ParamNum, [in] Value)
GetParamNumFromName([in] Address, [in] ParamNum)
GetLastError()
GetLastErrorStr([in] long ErrorCode)
GetParameterType([in] Address, [in] ParamNum)
Reset([in] Address)
ResetWait([in] Address)
WriteToFlash([in] Address)
WriteToFlashWait([in] Address)
SetFactors([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
SetFactorsBig([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
SetMACType([in] Address, [in] Type)
GetModuleType([in] Address, [out] ModuleType, [out] FirmWareVersion)
NanoGet([in] Address, [in] Page, [out] Data)
NanoPut([in] Address, [in] Page, [in] Data)
NanoProgram([in] Address, [in] FileName)
NanoWrite([in] Address)
NanoStop([in] Address)
NanoReset([in] Address)
NanoResetWait([in] Address)
NanoDebug([in] Address, [out] State, [out] Inputs, [out] Outputs, [out] Time, [out] Count, [out] ModeCmd)
AboutBox()

Properties:

ComPort
Retries

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 4

Method Descriptions:
In the examples MacComm is an instance of the MacComm OCX.
NOTE: All methods will block the calling thread until completed.

OpenPort()
Return type: Boolean
Returns true if open was successful
Description:
Use this method to open the port
Example(s):
C++:
 Opening the port
 bool Result=MacComm.OpenPort();

BASIC:
 Opening the port
 Dim Result As Boolean
 Result = MacComm.OpenPort

ClosePort()
Description:
Use this method to close the port
Example(s):
C++:
 Closing the port
 MacComm.ClosePort();

BASIC:
 Closing the port
 MacComm.ClosePort

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 5

ReadParameter([in] Address, [in] ParamNum, [out] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit signed integer (pointer) Value Value to be read (Pointer)
Return type: Boolean
Returns true if read was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to read a parameter from a Macmotor register

Value is one of the following types cast to a long integer:
 Word: 16 bit unsigned integer
 Integer: 16 bit signed integer
 LongInt: 32 bit signed integer
 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 Fixed8: 16 bit signed fixed point (Unit: 1/256)
 Fixed16 32 bit signed fixed point (Unit: 1/65536)
 Fixed24 32 bit signed fixed point (Unit: 1/256)
Example(s):
C++:
 Getting operation mode (Parameter number 2)
 long Value;
 bool Result=MacComm.ReadParameter(255,2,&Value);

 Getting position (Parameter 10: P_IST)
 long Value;
 bool Result=MacComm.ReadParameter(255,3,&Value);

BASIC:
 Common dim statements:
 Dim LocalValue As Long
 Dim Result As Boolean

 Getting operation mode (Parameter number 2)
 Result = MacComm.ReadParameter(255, 2, LocalValue)

 Getting position (Parameter 10: P_IST)
 Result = MacComm.ReadParameter(255, 10, LocalValue)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 6

ReadParameterAlternate([in] Address, [in] ParamNum, [out] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit floating point (pointer) Value Value to be read (Pointer)
Return type: Boolean
Returns true if read was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to read a parameter from a Macmotor register
This method uses the factors for Acceleration, Position and Velocity-registers, which can be set
by calling SetFactors.
Some of the other registers are converted using predefined factors (See SetFactors)
The rest just pass through
Types are handled automatically by this method
Example(s):
C++:
 Getting operation mode (Parameter number 2)
 float Value;
 bool Result=MacComm.ReadParameterAlternate(255,2,&Value);

 Getting position (Parameter 10: P_IST) multiplied with Positionfactor
 float Value;
 bool Result=MacComm.ReadParameterAlternate(255,3,&Value);

BASIC:
 Common dim statements:
 Dim LocalValue As Single
 Dim Result As Boolean

 Getting operation mode (Parameter number 2)
 Result = MacComm.ReadParameterAlternate(255, 2, LocalValue)

 Getting position (Parameter 10: P_IST) multiplied with Positionfactor
 Result = MacComm.ReadParameterAlternate(255, 10, LocalValue)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 7

WriteParameter([in] Address, [in] ParamNum, [in] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit signed integer Value Value to be written
Return type: Boolean
Returns true if write was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to write a parameter to a Macmotor register

Value is one of the following types cast to a long integer:
 Word: 16 bit unsigned integer
 Integer: 16 bit signed integer
 LongInt: 32 bit signed integer
 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 Fixed8: 16 bit signed fixed point (Unit: 1/256)
 Fixed16 32 bit signed fixed point (Unit: 1/65536)
 Fixed24 32 bit signed fixed point (Unit: 1/256)
Example(s):
C++:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 bool Result=MacComm.WriteParameter(255,2,2);

 Setting Position (Parameter 3: P_SOLL) to 4096 (Value 4096)
 bool Result=MacComm.WriteParameter(255,3,4096);

BASIC:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 Dim Result As Boolean
 Result = MacComm1.WriteParameter(255, 2, 2)

 Setting Position (Parameter 3: P_SOLL) to 4096 (Value 4096)
 Dim Result As Boolean
 Result = MacComm1.WriteParameter(255, 3, 4096)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 8

WriteParameterAlternate([in] Address, [in] ParamNum, [in] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit floating point Value Value to be written
Return type: Boolean
Returns true if write was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to write a parameter to a Macmotor register
This method uses the factors for Acceleration, Position and Velocity-registers, which can be set
by calling SetFactors.
Some of the other registers are converted using predefined factors (See SetFactors)
The rest just pass through
Types are handled automatically by this method
Example(s):
C++:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 bool Result=MacComm.WriteParameterAlternate(255,2,2);

 Setting Position (Parameter 3: P_SOLL) to 4000 divided by Positionfactor (Value 4000)
 bool Result=MacComm.WriteParameterAlternate(255,3,4000);

BASIC:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 Dim Result As Boolean
 Result = MacComm1.WriteParameterAlternate(255, 2, 2)

 Setting Position (Parameter 3: P_SOLL) to 4000 divided by Positionfactor (Value 4000)
 Dim Result As Boolean
 Result = MacComm1.WriteParameterAlternate(255, 3, 4000)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 9

GetParamNumFromName([in] Address, [in] ParamName)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor
String ParamName Parameter name
Return type: 16 bit signed integer
Returns parameter number or 0 if not found.
Description:
Use this method to retrieve the parameter number from the name
Example(s):
C++:
 Getting last error code:
 unsigned short ParamNum=MacComm.GetParamNumFromName(255, “P_IST”);

BASIC:
 Getting last error code:
 Dim ParamNum As Integer
 ParamNum=MacComm.GetParamNumFromName(255, “P_IST”)

AboutBox()
Description:
Shows a dialog about the program
Example(s):
C++:
 Show the about box
 MacComm.AboutBox();

BASIC:
 Show the about box
 MacComm.AboutBox

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 10

GetLastError()
Return type: 32 bit signed integer
Returns an error code like the Windows GetLastError(), but with some additions
Description:
Use this method to retrieve the error code for the last error
Example(s):
C++:
 Getting last error code:
 unsigned short ErrorCode=MacComm.GetLastError();

BASIC:
 Getting last error code:
 Dim ErrorCode As Integer
 ErrorCode = MacComm.GetLastError

GetLastErrorStr([in] ErrorCode)
Parameters:
Type Name Description
32 bit signed integer ErrorCode Errorcode to be converted to a string
Return type: String
Returns an error code description like the Windows GetLastError(), but with the same additions
as GetLastError()
Description:
Use this method to retrieve a description of an error code
Example(s):
C++:
 Get description of passed error code
 CString Text=MacComm.GetLastErrorStr(MacComm.GetLastError());

BASIC:
 Getting last error code:
 Dim Description As String
 Description = MacComm.GetLastErrorStr(MacComm.GetLastError)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 11

GetParameterType([in] Address, [in] ParamNum)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor
16 bit signed integer ParamNum Parameter number
Return type: 16 bit signed integer
Return value indicates what type the parameter is stored as internally in the MAC Motor
 -1 Invalid Invalid parameter!
 0 Word: 16 bit unsigned integer
 1 Integer: 16 bit signed integer
 2 LongInt: 32 bit signed integer
 3 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 4 Fixed8: 16 bit signed fixed point (Unit: 1/256)
 5 Fixed16 32 bit signed fixed point (Unit: 1/65536)
 6 Fixed24 32 bit signed fixed point (Unit: 1/256)
Description:
Use this method to determine how a parameter should be sent.
The integer types should just be used as parameters.
The Fixed4 type should be converted to an integer by multiplying with 4096
The Fixed8 type should be converted to an integer by multiplying with 256
The Fixed16 type should be converted to an integer by multiplying with 65536
The Fixed24 type should be converted to an integer by multiplying with 256
Example(s):
C++:
 Get Parameter 100s type
 short Type=MacComm.GetParameterType(100);

BASIC:
 Get Parameter 100s type
 Dim ParameterType As Integer
 ParameterType = MacComm.GetParameterType(100)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 12

Reset([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if reset was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Resets MAC motor to last flashed values.
Returns as soon as the Reset command has been sent to the MAC motor.
Example(s):
C++:
 Reset MAC motor
 bool Result=MacComm.Reset(255);

BASIC:
 Reset MAC motor
 Dim Result As Boolean
 Result=MacComm.Reset(255)

ResetWait([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if reset was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Resets MAC motor to last flashed values
Returns when MAC motor is ready.
Example(s):
C++:
 Reset MAC motor
 bool Result=MacComm.Reset(255);

BASIC:
 Reset MAC motor
 Dim Result As Boolean
 Result=MacComm.Reset(255)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 13

WriteToFlash([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if flashing was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Writes MAC registers to Flash memory
Returns as soon as the Flash command has been sent to the MAC motor.
Example(s):
C++:
 Write registers to flash
 bool Result=MacComm.WriteToFlash(255);

BASIC:
 Write registers to flash
 Dim Result As Boolean
 Result=MacComm.WriteToFlash(255)

WriteToFlashWait([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if flashing was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Writes MAC registers to Flash memory
Returns when MAC motor is ready.
Example(s):
C++:
 Write registers to flash
 bool Result=MacComm.WriteToFlashWait(255);

BASIC:
 Write registers to flash
 Dim Result As Boolean
 Result=MacComm.WriteToFlashWait (255)

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 14

SetFactors([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
Parameters:
Type Name Description
16 bit floating point Pos Position Factor
16 bit floating point Acc Acceleration Factor
16 bit floating point Vel Velocity Factor
Description:
Sets factors used by ReadParameterAlternate and WriteParameterAlternate
If a value of 0 is passed the previous factor is retained
The defaults are
Name Factor Resulting unit
PositionFactor 1 Pulses
AccelerationFactor ~248.3 RPM/s
VelocityFactor ~0.4768 RPM

The following registers are also converted, but these factors are fixed:
7 (T_SOLL) 100/1023 Percent
8 (P_SIM) 1/16 Encoder counts
16 (I2T) 1/22 Percent (assuming I2TLIM is 2200)
18 (UIT) 1/6 Percent (assuming UITLIM is 600)
41 (T_HOME) 100/1023 Percent
77-80 (T1-4) 100/1023 Percent
121 (VF_OUT) 100/1023 Percent
122 (ANINP) 10/1023 Volts
123 (ANINP_OFFSET) 10/1023 Volts
124 (ELDEGN_OFFSET) 360/2048 Degrees
125 (ELDEGP_OFFSET) 360/2048 Degrees
143 (ELDEG_IST) 360/2048 Degrees
151 (U_SUPPLY) 0.0537 Volts
Example(s):
C++:
 Set Position factor to 1/4096 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactors((float)1/4096,1,1);

BASIC:
 Set Position factor to 1/4096 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactors 1/4096,1,1

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 15

SetFactorsBig([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
Parameters:
Type Name Description
16 bit floating point Pos Position Factor
16 bit floating point Acc Acceleration Factor
16 bit floating point Vel Velocity Factor
Description:
Sets factors used by ReadParameterAlternate and WriteParameterAlternate
If a value of 0 is passed the previous factor is retained
The defaults are
Name Factor Resulting unit
PositionFactor 1 Pulses
AccelerationFactor ~277.922 RPM/s
VelocityFactor ~0.360938 RPM

The following registers are also converted, but these factors are fixed:
7 (T_SOLL) 100/1023 Percent
8 (P_SIM) 1/16 Encoder counts
21 (U_24V) ~74.47 Volts
29 (DEGC) 0.05/4096 Degrees
31 (DEGCMAX) 0.05/4096 Degrees
41 (T_HOME) 100/1023 Percent
46 (T_REG_P) 100/1023 Percent
77 (TQ0) 100/1023 Percent
78 (TQ1) 100/1023 Percent
79 (TQ2) 100/1023 Percent
80 (TQ3) 100/1023 Percent
169 (VF_OUT) 100/1023 Percent
170 (ANINP) 10/2047 Percent
171 (ANINP_OFFSET) 10/2047 Percent
172 (ELDEG_OFFSET) 360/1143 Electrical degrees
176 (MAN_ALPHA) 360/1143 Electrical degrees
190 (ELDEG_IST) 360/1143 Electrical degrees
191 (V_ELDEG) 360/1143 Electrical degrees
198 (U_BUS) 325.3/400 Volts
199 (U_BUS_OFFSET) 325.3/400 Volts
Example(s):
C++:
 Set Position factor to 1/8000 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactorsBig ((float)1/8000,1,1);

BASIC:
 Set Position factor to 1/8000 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactorsBig 1/8000,1,1

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 16

SetMACType([in] Address, [in] Type)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
BOOL Type true if it is a MAC 400 or MAC 800
Description:
Sets MAC motor type.
Default is 0
Type can have the following values:

0 MAC50/95/140/141
1 MAC400/800

Example(s):
C++:
 Set MAC400 on address 4:
 MacComm.SetMACType (4,TRUE);

BASIC:
 Set MAC80 on address 4:
 MacComm.SetMACType 4,FALSE

GetModuleType([in] Address, [out] ModuleType, [out] FirmWareVersion)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit unsigned short integer ModuleType What type of module is it
16 bit unsigned short integer FWVersion FirmWare version
Description:
Reads module information from the MAC motor
The values of ModuleType are:
 1 MAC00-Rx module (NanoPLC)
 2 MAC00-FPx module (Profibus)
 3 MAC00-FCx module (CAN-Open)
Example(s):
C++:
 Read page 0:
 VARIANT Data;
 MacComm.NanoGet (255,0,Data);

BASIC:
 Read Page 0:
 dim Data as VARIANT
 MacComm.NanoGet 255,0,Data

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 17

NanoGet([in] Address, [in] Page, [out] Data)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit unsigned short integer Page What page is to be read
VARIANT Data Array of Bytes (128 elements of type VT_UI1)
Description:
Reads a page from the RX module
Example(s):
C++:
 Read page 0:
 VARIANT Data;
 MacComm.NanoGet (255,0,Data);

BASIC:
 Read Page 0:
 dim Data as VARIANT
 MacComm.NanoGet 255,0,Data

NanoPut([in] Address, [in] Page, [in] Data)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit unsigned short integer Page What page is to be read (0-3)
VARIANT Data Array of Bytes (128 elements of type VT_UI1)
Description:
Sends a page to the RX module
Example(s):
C++:
 Send page 0:
 VARIANT Data;
 MacComm.NanoPut (255,0,Data);

BASIC:
 Send Page 0:
 dim Data as VARIANT
 MacComm.NanoPut 255,0,Data

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 18

NanoProgram([in] Address, [in] FileName)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
BSTR FileName HEX-file to be sent to RX module
Description:
Reads the HEX-file, and writes it to the RX module
Example(s):
C++:
 Send “C:\File.hex”:
 MacComm.NanoProgram(255,”C:\\File.hex”);

BASIC:
 Send “C:\File.hex”:
 MacComm.NanoProgram 255,”C:\File.hex”

NanoWrite([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Description:
Write pages to flash in RX module
NOTE: Waits for module to become ready before returning
Example(s):
C++:
 Write Page
 MacComm.NanoWrite(255);

BASIC:
 Write Page
 MacComm.NanoWrite 255

NanoStop([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Description:
Stops the program
Example(s):
C++:
 Stop progam:
 MacComm.NanoStop(255);

BASIC:
 Stop progam:
 MacComm.NanoStop 255

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 19

NanoReset([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Description:
Resets RX module (which also starts the program)
Returns immediately after the command has been sent
Example(s):
C++:
 Reset module/start progam:
 MacComm.NanoReset(255);

BASIC:
 Reset module/start progam:
 MacComm.NanoReset 255

NanoResetWait([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Description:
Resets RX module (which also starts the program)
Returns when the module is ready
Example(s):
C++:
 Reset module/start progam:
 MacComm.NanoResetWait(255);

BASIC:
 Reset module/start progam:
 MacComm.NanoResetWait 255

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 20

NanoDebug
([in]Address,[out]State,[out]Inputs,[out]Outputs,[out]Time,[out]Count,[out]ModeCmd)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit unsigned short integer State
16 bit unsigned short integer Inputs Inputs in binary format
16 bit unsigned short integer Outputs Outputs in binary format
32 bit unsigned long integer Time Time module has been running
32 bit unsigned long integer Count
16 bit unsigned short integer ModeCmd
Description:
Reads information for debugging
Example(s):
C++:
 Reset module/start progam:
 unsigned short State,Inputs,Outputs,ModeCmd;
 unsigned long Time,Count;
 MacComm.NanoDebug(255,State,Inputs,Outputs,Time,Count,ModeCmd);

BASIC:
 Reset module/start progam:
 dim State, Inputs, Outputs, ModeCmd as Integer
 dim Time, Count as Long;
 MacComm.NanoReset 255, State, Inputs, Outputs, Time, Count, ModeCmd

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 21

Installation

The MacComm OCX and required DLLs are installed automatically by running Setup.exe and
following the onscreen prompts.
You have the option to install a Visual Basic sample and a LabVIEW sample along with the
OCX.

It can also be done manually by copying the following Microsoft redistributable DLLs to the
Windows\System folder:

• OLEAUT32.DLL
• OLEPRO32.DLL

MacComm.OCX should be placed in a directory called MacComm in the Windows folder, and
registered with RegSvr32 i.e. “Regsvr32 C:\Windows\MacComm\MacComm.ocx”

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 22

Adding MacComm OCX to the program

Visual Basic 6

1. In the menu Projects click Components.
2. Make sure the “Selected Items Only” checkbox is NOT selected
3. Find “MacComm OCX Control module”, and put a checkmark besides it, and click OK

The MacComm OCX is now available in the controls bar
When put on a form the properties page of the object can be used to set the startup values for
the 2 properties (Retries and ComPort)

Visual C++ 6

1. In the menu “Projects” choose “Add To Project” and click “Components and Controls…”
2. Go into the folder “Registered ActiveX Controls” and click “MacComm Control”
3. Click Insert, and two times OK followed by a Close

The MacComm OCX is now available in the controls bar
When put on a dialog the properties page of the object can be used to set the startup values
for the 2 properties (Retries and ComPort)

Visual .NET
1. In the menu “Tools” click “Customize Toolbox…”
2. Find “MacComm OCX Control module”, and put a checkmark besides it, and click OK

The MacComm OCX is now available in the Toolbox
When put on a form the properties page of the object can be used to set the startup values for
the 2 properties (Retries and ComPort)

Borland C++ Builder 6.0
1. In the menu “Component” click “Import ActiveX Control…”
2. Select “MacComm ActiveX Control module…” in the lists of components.
3. Press the “install…” button.
4. On the page “Into existing package” select the dclusr.bpk file (This should be default)

and click “OK”.
5. Select “yes” to rebuild the package.
6. The ActiveX should now be available in the tool palette on the ActiveX page.

LabVIEW 7.0

1. Place an ActiveX container on your Front Panel.
2. Right click it and select "Insert ActiveX object…"
3. Select MacComm Control from the list.
4. Connect it to a "Property node" and use this to setup the properties.
5. Connect it to an "Invoke node" and use this to call the methods.

MacComm OCX Control 1.01
User Manual

 JVL Industri Elektronik A/S – User Manual – MacComm OCX Control 23

Custom Errors:

Hex value: Description
2000 0000 Serial port could not be initialized
2000 0001 Serial port is not open
2000 0002 Could not write required Bytes to serial port
2000 0003 Answer is not of expected length
2000 0004 Invalid accept from mac motor
2000 0005 Startsync error in reply
2000 0006 Address mismatch in reply
2000 0007 Parameter number mismatch in reply
2000 0008 Parameter length mismatch in reply
2000 0009 Inversion check failed on value
2000 000A Endsync error in reply
2000 000B Unspecified error
2000 000C Error entering safe mode
2000 000D Timeout

