CDD3000 Application Manual

Servocontroller system
2.4 A-170 A

Adaptation of the drive system to the application

LUST

Before purchase

With delivery (depending on supply package)

Overview of documentation

CDD3000 Catalogue

 Selecting and ordering a drive system

Application Manual

 Adaptation of the drive system to the application

CDD3000 Application Manual

ID no.: 0931.22 B.2-00
Date: 05/2007
Applicable from firmware version V3.20
Required DriveManager at least version V3.50-00

We reserve the right to make technical changes.

LUST

How to use this Manual

Dear User,

This manual is aimed primarily at you as a programmer of drive and automation solutions. It describes how you can adapt your new CDD3000 drive system optimally to your specific application. We assume your drive has been commissioned by means of the first commissioning procedure if note, you should first refer to the Operation Manual.

Don't be put off by the size of the manual: Only sections 1 to 3 contain essential information with which you need to familiarize yourself. The remaining sections and the Appendix are provided as reference resources: (they present the full scope of functions and flexibility of the software of the CDD3000 in handling a wide variety of drive tasks.) In those sections you can also concentrate on the functions of relevance to your application, e.g. encoder simulation or sinusoidal ramps.

Good luck, and have a nice day!

1	Safety	1
$\mathbf{2}$	Inverter module CDD3000	2
$\mathbf{3}$	User and data structure	Preset solutions
$\mathbf{5}$	Software functions and parameters	5
Appendix:Parameter overview, Error table, Glossary Index		A

LUST

Pictograms

> Important! Misoperation may damage the drive or cause it to malfunction.
> Danger from electrical tension!!mproper behaviour may endanger human life.

Danger from rotating parts!The drive may start running automatically.

Note: Useful information

Reference: More information in other sections of the Application Manual or additional documents

LUST

Table of contents

1 Safety
1.1 Measures for your safety 1-7
1.2 Intended use $1-9$
1.3 Responsibility 1-10
2 Servocontroller CDD3000
2.1 Device and terminal view 2-2
2.2 Module mounting 2-8
2.3 Ambient conditions 2-10
2.4 Specification of control connections 2-11
2.5 LEDs 2-14
2.6 Isolation concept 2-15
2.7 Device software 2-17
3 User control structure
3.1 Operation with DriveManager 3-2
3.1.1 User screens 3-4
3.1.2 Parameter Editor 3-8
3.1.3 User levels 3-9
3.2 Operation with KeYPad KP200XL 3-10
3.3 Saving the settings 3-14
3.4 Device status 3-17
3.5 Commissioning 3-20

LUST

4 Preset solutions
4.1 Selecting preset solutions 4-3
4.1.1 Reference structure 4-7
$4.2 \quad$ Torque control (TCT_ 1) 4-10
4.2.1 Making basic settings 4-10
4.2.2 Setting function parameters 4-11
4.2.3 Terminal assignment 4-12
4.3 Speed control with external position control (SCT_1) 4-13
4.3.1 Making basic settings 4-15
4.3.2 Setting function parameters 4-16
4.3.3 Terminal assignment 4-17
4.4 Speed control with $\pm 10 \mathrm{~V}$ reference input (SCT_2, SCB_2) 4-18
4.4.1 Making basic settings 4-19
4.4.2 Setting function parameters 4-21
4.4.3 Terminal assignment 4-22
4.4.4 Control via field bus 4-23
4.5 Speed control with fixed speeds (SCT_3, SCB_3) 4-24
4.5.1 Making basic settings 4-25
4.5.2 Setting function parameters 4-28
4.5.3 Terminal assignment 4-29
4.5.4 Control via field bus 4-30
4.6 Speed control via pulse input (SCT_4, SCB_4) 4-31
4.6.1 Making basic settings 4-33
4.6 .2 Setting function parameters 4-36
4.6.3 Terminal assignment 4-37
4.6.4 Control via field bus 4-38
4.7 Speed control, reference and Control via field bus (SCB_5) 4-39
4.7.1 Making basic settings 4-40
4.7.2 Setting function parameters 4-41
4.7.3 Terminal assignment 4-42

LUST

4.8 Positioning, reference and Control via field bus (PCB_2) 4-43
4.8.1 Making basic settings 4-44
4.8.2 Setting function parameters 4-53
4.8.3 Terminal assignment 4-54
$4.9 \quad$ Positioning with fixed positions (PCT_3, PCB_3) 4-55
4.9.1 Making basic settings 4-56
4.9.2 Setting function parameters 4-65
4.9.3 Terminal assignment 4-66
4.9.4 Control via field bus 4-68
4.9.5 Activation 4-69
4.10 Positioning free programmable (iMotion) (PCT_4, PCB_4) 4-72
4.10.1 Overview of functions 4-73
4.10 .2 Making basic settings 4-78
4.10.3 Special functions of the preset solution 4-96
4.10.4 Terminal assignment 4-105
4.10.5 Activation 4-106
4.10.6 Control via field bus 4-107
4.10 .7 Command set 4-108
4.10.8 Sequence programs 4-142
4.10.9 Program examples 4-144
4.10.10 Calculation aids 4-150
5 Software functions
$5.1 \quad$ Inputs 5-3
5.1.1 Analog inputs 5-4
5.1.2 Digital inputs 5-10
5.1.3 Digital inputs User module UM8140 (optional) 5-21
5.1.4 Virtual (digital) inputs 5-23
5.2 Outputs 5-24
5.2.1 Digital outputs 5-25
5.2.2 Digital outputs, user module UM8140 5-46
5.2.3 Virtual (digital) outputs 5-47

LUST

5.3 Loop control 5-48
5.3.1 Loop control software 5-49
5.3.2 Speed control / Position control 5-51
5.4 Limit values 5-59
5.4.1 Limit values 5-60
5.4.2 Tolerances 5-61
5.4.3 Tracking error 5-63
5.4.4 Stop ramps 5-64
5.5 Motor and encoder 5-65
5.5.1 Motor 5-66
5.5.2 Motor protection 5-68
5.5.3 Encoder 5-71
5.5.4 Find commutation 5-79
5.5.5 Linear motors 5-90
5.6 Actual values 5-92
5.6.1 Temperatures 5-93
5.6.2 Device data 5-94
5.6.3 Slots 5-95
5.6.4 Field bus 5-96
5.7 Error messages 5-97
5.8 Bus systems 5-99
5.8.1 PROFIBUS 5-100
5.8.2 CANLust 5-101
5.8.3 CANopen 5-103
5.9 Master encoder/Encoder simulation 5-104
5.9.1 Encoder simulation 5-105
5.9.2 Master encoder 5-109
5.9.3 Encoder simulation via SSI 5-113
5.10 Cam gear 5-116

A Overview of parameters

B Troubleshooting

C Index

LUST

1 Safety

1.1 Measures for your safety

The new CDD3000 servocontrollers are quick and safe to handle. For your own safety and for the safe functioning of your device, please be sure to observe the following points:

Read the Operation Manual first!

- Follow the safety instructions!

Electric drives are

 dangerous:- Electrical voltages > $230 \mathrm{~V} / 460 \mathrm{~V}$: Dangerously high voltages may still be present 10 minutes after the power is cut. so always make sure the system is no longer live!
- Rotating parts
- Hot surfaces

Protection against magnetic and/or electromagnetic

 fields during installation and operation.- Persons fitted with heart pacemakers, metallic implants and hearing aids etc. must not be allowed access to the following areas:
- Areas where drive systems are installed, repaired and operated.
- Areas where motors are installed, repaired and operated. Motors with permanent magnets pose a particular hazard.

Note: If it is necessary to access such areas, suitability to do so must be determined beforehand by a doctor

Your qualification:

- In order to prevent personal injury and damage to property, only personnel with electrical engineering qualifications may work on the device.
- The said qualified personnel must be familiar with the contents of the Operation Manual (cf. IEC364, DIN VDE0100).
- Knowledge of national accident prevention regulations (e.g. VBG 4 in Germany, regulations laid down by the employers' liability insurance associations) is essential.

During installation observe the following instructions:

- Always comply with the connection conditions and technical specifications.
- Comply with the standards for electrical installations, such as regarding cable cross-section, PE conductor and earth connections.
- Do not touch electronic components and contacts (electrostatic discharge may destroy components).

Pictograms used

The safety instructions detail the following hazard classes.
The hazard class defines the risk posed by failing to comply with the safety notice.

Warning symbols	General explanation	Hazard class to ANSI Z 535
	Important! Misoperation may damage the drive or cause it to malfunction.	Serious injury or damage to property may occur.

1.2 Intended use

Drive controllers are components that are intended for installation in stationary electrical systems or machines.
The drive controllers may not be commissioned (i.e. may not be put to their intended use) until it has been established that the machine complies with the provisions of EC Directive 98/37/EC (Machinery Directive); EN 60204 is to be observed.
Commissioning (i.e. putting the device to its intended use) is only permitted in compliance with the EMC Directive (89/336/EEC).
C
The CDD3000 conforms to the Low Voltage Directive 73/23/ ECC.

The harmonized standards of the EN 50178/DIN VDE 0160 series in conjunction with EN 60439-1/ VDE 0660 part 500 and EN 60146/
VDE 0558 are to be applied with regard to the drive controllers.
If the drive controller is used for special applications (e.g. in areas subject to explosion hazard), the required standards and regulations (e.g. EN 50014, "General provisions" and EN 50018 "Pressurized enclosure") must always be observed.
Repairs may only be carried out by authorized repair workshops. Unauthorized opening and incorrect intervention could lead to death, physical injury or material damage. The warranty provided by LUST would thereby be rendered void. and is permissible only by special agreement.

1.3 Responsibility

Electronic devices are fundamentally not fail-safe. The company setting up and/or operating the machine or plant is itself responsible for ensuring that the drive is rendered safe if the device fails.

EN 60204-1/DIN VDE 0113 "Safety of machines", in the section on "Electrical equipment of machines", stipulates safety requirements for electrical controls. They are intended to protect personnel and machinery, and to maintain the function capability of the machine or plant concerned, and must be observed.

An emergency off system does not necessarily have to cut the power supply to the drive. To protect against danger, it may be more beneficial to maintain individual drives in operation or to initiate specific safety sequences. Execution of the emergency off measure is assessed by means of a risk analysis of the machine or plant, including the electrical equipment to DIN EN 1050, and is determined with selection of the circuit category in accordance with DIN EN 954-1 "Safety of machines - Safetyrelated parts of controls".

2 Servocontroller CDD3000

2.1 Device and terminal view 2-2
2.2 Module mounting 2-8
2.3 Ambient conditions 2-10
2.4 Specification of control connections 2-11
2.5 LEDs 2-14
2.6 Isolation concept 2-15
2.7 Device software 2-17
Note: \quad This section sets out basic aspects of the device hardware which are essential to understanding and using the Application Manual. For more information on the device hardware refer to the CDD3000 Operation Manual.

2.1 Device and terminal view

Figure 2.1 Layout, CDD3000

No.	Designation	Function
H1, H2, H3	LEDs	Device status display
X1	Power connection	Mains, motor, braking resistor (L+/RB), DC supply
X2	Control connection	4 digital inputs 3 digital outputs (of which 1 relay) 2 analog inputs
X3	PTC connection	PTC, Klixon evaluation or linear temperature transmitter
X4	RS232 connection	Serial interface for connection of DRIvEMANAGER or KEYPAD KP200XL
X5	Position communication	Encoder simulation/master encoder with TTL level
X6	Resolver connection	Resolver, Hall sender
X7	Encoder connection	Single/multi-turn with SIN/COS signal, SSI or Hiperface interface

Table 2.1 Key to CDD3000 layout

No.	Designation	Function
X8	Option slot 1	e.g. for user module UM8140
X9	Option slot 2	e.g. for communication module CM-xxx
X15	Control terminal UM8140	I/O expansion

Table 2.1 Key to CDD3000 layout

X1	Designation 32.xxx	X1	Designation 34.xxx
	Motor cable U		Motor cable U
v	Motor cable V	v	Motor cable V
\square	Motor cable W	w	Motor cable W
-	Grounding lead PE	\square	Grounding lead PE
\square	Grounding lead PE	\square	Grounding lead PE
\square \div \square L+	DC-link voltage + /Braking resistor	$\square \square_{\square}^{\square}$	DC-link voltage + /Braking resistor
$\square \mathrm{RB}$	Braking resistor		Braking resistor
\square L-	DC-link voltage -		DC-link voltage -
$\square \pm$	Grounding lead PE		Grounding lead PE
\square	NC		Mains phase L3
\square N	Neutral conductor		Mains phase L2
$\square \mathrm{L}$	Mains phase L1	$\square \mathrm{L}$	Mains phase L1

Table 2.2 Power terminal designation, CDD3000

Note: Be sure to observe device name plate data.

X2		Designation	Function
$\begin{aligned} & 20 \\ & 19 \\ & 18 \\ & 17 \\ & 16 \\ & 15 \\ & 14 \\ & 13 \\ & 12 \\ & 11 \end{aligned}$		BRK $_{\text {Out }}$	Brake output
		BRK $_{\text {GND }}$	Ground for brake output, supply
		$\mathrm{BRK}_{\text {vcc }}$	24 V for brake output, supply
	\square	OSD02	Relay output (root) 14
	\square	OSD02	Relay output (NO contact)) 13
		OSD01	Digital output
		OSD00	Digital output
	\square	DGND	Digital ground
		ISD04	Digital input
		ISD03	Digital input
10	\square	ISD02	Digital input
9	\square	ISD01	Digital input
8	\square	ISD00	Digital input
7	\square	ENPO	Power stage hardware enable
6	\square	DGND	Digital ground
5	\square	+24V	Auxiliary voltage +24 V
4	\square	ISA01-	Analog reference input 0-10 V
3	\square	ISA01+	Analog reference input 10 V
2	\square	ISAOO-	Analog reference input +10 V
1		ISAOO+	Analog reference input $\pm 10 \mathrm{~V}$

Table 2.3 Control terminal designation, CDD3000

Table 2.4 Control terminal designation, UM-8140

Pin assignment of serial interface X4 9-pin D-Sub socket

X4/Pin	Function
1	+15 V DC for KEyPAD KP200
2	TxD, send data
3	RxD, receive data
4	Do not use
5	GND for +15 V DC of KeyPad KP200
6	+24 V DC, control pcb power supply
7	Do not use
8	Do not use
9	GND for +24 V DC, control pcb power supply

Table 2.5 Pin assignment X4

Pin assignment X5 Position communication 9-pin D-Sub plug

X5/Pin	Function
1	GND
2	GND
3	R-
4	B -
5	A+
6	$5 \mathrm{~V} / 100 \mathrm{~mA}$
7	R+
8	B+
9	A-

Table 2.6 Pin assignment X5

Pin assignment X6 Resolver 9-pin D-Sub socket

X6/Pin	Function
1	SIN+ (S2)
2	SIN- (S4)
3	COS $+(S 1)$
4	GND
5	PTC
6	REF+ (R1) (8 kHz, approx. 7 V AC)
7	REF- (R2)
8	COS- (S3)
9	PTC

Table 2.7 Pin assignment X6

Pin assignment X7 Encoder connection 15-pin HD D-Sub socket

X7/Pin	Sin/Cos function	SSI function	HIPERFACE function
1	A-	A-	REFCOS
2	A+	A+	COS +
3	V (150 mA)	V (150 mA)	
4		DATA+	Data + RS485
5		DATA-	Data- RS 485
6	B -	REFSIN	
7		GND	Us 7-12 V / 100 mA
8	GND		GND
9	R-	Sense +	
10	R+	Sense-	
11	B+	CLK +	SIN +
12	Sense +	CLK-	Sense+
13	Sense-		
14			
15			

Table 2.8
Pin assignment $X 7$

2.2 Module mounting

The CDD3000 servocontrollers have two option slots to accommodate user and communication modules.

Servocontrollers up to size BG5 are side mounted. To remove them, press the red release lever on the front and withdraw the module to the side.

Servocontrollers BG1 ... BG5

X8 = Option slot 1 for user modules (UM-xxxx)
X9 = Option slot 2 for communication modules (CM-xxxx).
Figure 2.2 Mounting of user/communication modules

For servocontroller sizes BG6 to BG8 the modules are built-in. For mounting you will require one mounting package MP-CMUM for each module (see Order Catalogue). Each mounting package also includes a ribbon cable to connect X8 to X8 or X9 to X9.

Servocontrollers BG6 ... BG8

The CDD3000 servocontroller has two option slots to accommodate user and communication modules.

Figure 2.3 Mounting of user/communication modules (BG6 to BG8)

Important: Do not plug in/remove modules during operation.

2 Servocontroller CDD3000

2.3 Ambient conditions

Characteristic		Specification of servocontrollers
Temperature range	in operation	$\begin{array}{\|l} \hline-10 \ldots 45^{\circ} \mathrm{C}(\text { BG1 } \ldots \text { BG5) } \\ -10 \ldots 40^{\circ} \mathrm{C} \text { (BG6 } \ldots \text { BG8) } \\ \text { with power reduction to } 55^{\circ} \mathrm{C} \\ \hline \end{array}$
	in storage	$-25 \ldots+55^{\circ} \mathrm{C}$
	in transit	$-25 \ldots+70^{\circ} \mathrm{C}$
Relative air humidity		$15 . . .85 \%$, condensation not permitted
Mechanical strength to IEC 68-2-6	Vibration	$0,075 \mathrm{~mm}$ in frequency range $10 \ldots 57 \mathrm{~Hz}$ 1 g in frequency range $57 \ldots 150 \mathrm{~Hz}$
Protection	Device	IP20 (NEMA 1)
	Cooling method	Cold plate: IP20 Push-through heat sink: IP54 (3 ... 15 kW)
Touch protection		VBG 4
Mounting height		up to 1000 m above MSL, above 1000 m above MSL with power reduction 1\% per 100 m , max. 2000 m above MSL

Table 2.9 Ambient conditions for the servocontrollers

2.4 Specification of control connections

Servocontroller CDD3000

Des.	No.	Des.	Specification	Isolation
	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { ISAOO+ } \\ \text { ISAOO- } \end{array}$	- ISA00: $\mathrm{U}_{\mathrm{IN}}= \pm 10 \mathrm{VDC}$, resolution 12-bit, sampling time 1 ms (special function $125 \mu \mathrm{~s})$	
Analog Inputs	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { ISA01+ } \\ & \text { ISAO1- } \end{aligned}$	- ISA01: $\mathrm{U}_{\mathrm{IN}}=+10 \mathrm{VDC}$, resolution 10 -bit, sampling time 1 ms - Tolerance: $\pm 1 \%$ of meas. - 24 V digital input, PLC-compatible Switching level Low/High: $<4.8 \mathrm{~V} />8 \mathrm{~V}$ DC Sampling time 1 ms - $\mathrm{R}_{\mathrm{IN}}=110 \mathrm{k} \Omega$	
Digital Inputs	$\begin{gathered} \hline 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	$\begin{aligned} & \hline \text { ISD00 } \\ & \text { ISD01 } \\ & \text { ISD02 } \\ & \text { ISD03 } \\ & \text { ISD04 } \end{aligned}$	- ISDOO-ISDO2: Frequency range $<500 \mathrm{~Hz}$, sampling time 1ms - ISD03-ISD04: Frequency range < 500 kHz , sampling time 1ms (special functions $<2 \mu \mathrm{~s}$) - PLC-compatible Switching level Low/High: <5 V / > 18 V DC - $I_{\text {max }}$ (at 24 V$)=10 \mathrm{~mA}$ - $R_{\text {IN }}=3 \mathrm{k} \Omega$	Yes
	7	ENPO	- Hardware enable of power stage = High level - Specification as ISDOO	Yes
Digital Outputs	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \text { OSDOO } \\ & \text { OSDO1 } \end{aligned}$	- Short-circuit-proof with 24 V supply from servocontroller - PLC-compatible, sampling time 1 ms - $I_{\text {max }}=50 \mathrm{~mA}$, high-side driver - No internal freewheeling diode; provide external protection	Yes

Table 2.10 Specification of control connections

Des.	No.	Des.	Specification	Isolation
Relay output	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	OSD02	- Relay, 1 NO contact - $25 \mathrm{~V} / 1 \mathrm{~A} \mathrm{AC}$, usage category $\mathrm{AC1}$ - $30 \mathrm{~V} / 1 \mathrm{~A} \mathrm{DC}$, usage category DC1 - Sampling time 1 ms - Operating delay approx. 10 ms	Yes
voltage supply	$\begin{gathered} \hline 5 \\ 6,13 \end{gathered}$	$\begin{aligned} & +24 \mathrm{~V} \\ & \text { DGND } \end{aligned}$	- Auxiliary voltage $\mathrm{U}_{\mathrm{V}}=24 \mathrm{~V}$ DC, short-circuit-proof - Tolerance $\pm 20 \%$ - $I_{\text {max }}=100 \mathrm{~mA}$ (overall, also includes driver currents for outputs OSDOx) - External 24 V supply to control electronics in case of power failure possible, Current consumption $I_{\max }=1 \mathrm{~A}$	Yes
Motor holding brake	$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { VCCO3 } \\ & \text { GND03 } \\ & \text { OSD03 } \end{aligned}$	- Digital +24 V output, high-active - Short-circuit-proof - Suitable for actuation of a motor holding brake - $I_{\text {max }}=2,0 \mathrm{~A}$ (current overload causes shutoff) to $v u_{\max }=45^{\circ} \mathrm{C}$; reduction of $I_{\text {max }}$ at $v_{u}>45^{\circ} \mathrm{C}$. - $I_{\text {min }}=150 \mathrm{~mA}\left(I<I_{\text {min }}\right.$ wire break causes shut-off) - Separate voltage supply required: $\begin{aligned} & U_{\mathbb{N}}=+24 \mathrm{~V} \pm 10 \% \\ & \mathrm{I}_{\mathrm{N}}=2.1 \mathrm{~A} \end{aligned}$ - Also usable as configurable digital output	Yes

Table 2.10 Specification of control connections

User module UM-8140

Des.	Terminal	Specification	floating
Digital input			
+24V DC	X15-21	Auxiliary voltage for IEDxx	
$\begin{aligned} & \text { IED00 } \\ & \text { to } \\ & \text { IED07 } \end{aligned}$	$\begin{aligned} & \text { X15-22 to } \\ & \text { X15-29 } \end{aligned}$	- Limit frequency 5 kHz - PLC-compatible - Switching level Low/High: <5 V / > 18 V DC - $I_{\text {max }}$ at $24 \mathrm{~V}=6 \mathrm{~mA}$ - $\mathrm{R}_{\text {IN }}=4 \mathrm{k} \Omega$ - Internal signal delay time $\approx 2 \mu \mathrm{~s}$ - Terminal scan cycle $=1 \mathrm{~ms}$	Yes
DGND	X15-30	- Digital ground for IEDxx	
$\begin{aligned} & \text { OEDO0 } \\ & \text { to } \\ & \text { OED03 } \end{aligned}$	$\begin{aligned} & \text { X15-32 to } \\ & \text { X15-35 } \end{aligned}$	- Short-circuit proof, $\mathrm{I}_{\mathrm{kmax}}=1.2 \mathrm{~A} /$ OEDxx - PLC-compatible - Current at " 1 ": $I_{\text {min }}=5 \mathrm{~mA}$ $I_{\max }=500 \mathrm{~mA}$ - $I_{\max }$ in parallel operation $=125 \mathrm{~mA}$ - Internal signal delay time $\approx 250 \mu \mathrm{~s}$ - Terminal scan cycle $=1 \mathrm{~ms}$ - Protection against inductive load - Thermal overload protection - High-side driver	Yes
DGND	X15-31	- Digital ground for OEDxx	
Supply voltage, module feed			
+24V DC	X15-1	- $U_{V}=24 \mathrm{VDC} \pm 20 \%$ - $\mathrm{I}=0.6 \mathrm{~A}$ - No polarity reversal protection	
DGND	X15-2	- Digital ground	

Table 2.11 Specification of control connections, UM-8I4O

2.5 LEDs

At the top right of the servocontroller there are three status LEDs coloured red $(\mathrm{H} 1)$, yellow $(\mathrm{H} 2)$ and green $(\mathrm{H} 3)$.

Device status	Red LED (H1)	Yellow LED (H2)	Green LED (H3)
Power on	\bigcirc	\bigcirc	\bigcirc
Servocontroller ready (ENPO set)	\bigcirc	O	O
Control enabled	\bigcirc	*	\bigcirc
Error	* (flash code)	\bigcirc	-
Warning (in "ready" condition)	-	-	-
Warning (in "control enabled" condition)	\bigcirc	*	\bigcirc
LED off, LED on, * LED flashi			

Table 2.12 Meanings of LEDs

Note: Error messages can be viewed in more detail using the KeyPad KP200 control unit or the DriveManager.
\qquad

For more information on the error messages see Appendix B.

2.6 Isolation concept

Special case: use of an analog input as a digital input

The analog and digital inputs are isolated from each other in order to avoid transient currents and interference over the connected lines. The analog inputs are connected to the potential of the servocontroller processor. The digital inputs and outputs are isolated, thereby keeping interference away from the processor and the analog signal processing.

Figure 2.4 Voltage supply to I/Os

When selecting the cable, note that the cables for the analog inputs and outputs must always be shielded. The cable or wire core shield on shielded pairs should cover as large an area as possible in respect of EMC considerations, thereby providing safe discharge of high-frequency interference voltages (skin effect).

Use of the device's internal 24 V DC as supply voltage in conjunction with the analog input ISA01 as the digital input requires connection of digital ground and of signals ISA01-. For the reasons mentioned above, this can lead to interference, and demands extra care in selecting and connecting the control cables.

Note: \quad Only analog input ISA01 usable as digital input.

Note: Optionally, the standard inputs and outputs provided can be expanded by an additional eight inputs and four outputs with the user module UM-8I4O.

Example: Risk of disturbance
A bridge is only required when the internal 24 V is used.

X2	Des.	Function
1	ISA00 +	Analog reference input $\pm 10 \mathrm{~V}$
2	ISA00-	Analog reference input $\pm 10 \mathrm{~V}$
3	ISA01+	Analog reference input $0-10 \mathrm{~V}$
	ISA01-	Analog reference input $0-10 \mathrm{~V}$
	+24 V	Auxiliary voltage 24 V,
	DGND	Digital ground

Figure 2.5 Removal of isolation
If more digital inputs and outputs are required than are present on the servocontroller, we recommend using user module UM-814O. It ensures safe operation of the CDD3000 servocontroller with no disturbance of the analog signals. Safe operation based on burst immunity to EN 61000-4-4 is not affected by connection of the analog and digital ground. The only effect may be on evaluation of the analog input resulting from interference voltage where long cables are attached to the digital outputs and inputs.

CDD3000

Figure 2.6 Disturbance of the analog input

For more information on the analog and digital inputs, see section 5.1.

2.7 Device software

Loading new device software

Note: \quad This function is available as from hardware version 1.1.

With the DriveManager a new device software release (firmware) can be loaded into the Flash-EPROM of the CDD3000.

1. To perform the update, connect the DriveManager to the servocontroller.
2. From the Tools menu choose "Load device software (firmware) ...". The DriveManager then guides you through the further work steps. LEDs H 2 and H 3 are lit steadily during transfer of the firmware. When the transfer is completed successfully, LED H2 goes out provided no ENPO signal is applied.

LUST

3 User control structure

3.1 Operation with DriveManager 3-2
3.1.1 User screens 3-4
3.1.2 Parameter editor 3-8
3.1.3 User levels 3-9
3.2 Operation with KeyPad KP200XL 3-10
3.3 Saving settings 3-14
3.4 Device status 3-17
3.5 Commissioning 3-20

Operation variants

The user structure of the CDD3000 is highly flexible, as a result of the various user control variants and wide-ranging parameter-setting facilities.

The user control variant are:

- DriveManager PC user software The user friendly DriveManager user interface (DM) is recommended for complete parameter setting/commissioning of the servocontroller. Parameters are set in user screens or, for the experienced user, by way of the Parameter Editor.
- KP200 control unit

The user-friendly KP200/KP200XL hand-held control unit is intended for parameter changing or for storing/loading data sets on SmartCard, for torque and speed control only

- Field buses
- CAN ${ }_{\text {Lust }}$
- CAN ${ }_{\text {open }}$
- PROFIBUS

3 User control structure

3.1 Operation with DriveManager

The key functions

For more information refer to the DriveManager Help.

Connection and startup

- Connect the interface cable and switch on the power supply to the drive unit.
- When the program starts the DRIVEMANAGER (version 3.x or higher) automatically connects to the attached drive unit.
- If the connection setup does not occur automatically, check the settings in the Tools > Options menu and start the connection setup with the icon

Servocontroller connection to PC/DriveManager

Icon	Function	Menu
Connect to device	Communication > Connect > Single device	
An	Change device settings	Active device > Change settings
set		

Icon	Function	Menu
I_{H}	Bus initialization (change settings)	Communication > Bus configuration
$\% \ll$	Disconnect from device	Communication > Disconnect
	Compare device settings	Active device > Compare settings

Note: For more information refer to the Drivemanager. Operation Manual

3.1.1 User screens

DRIvEM Anager
Quick access to CDD3000 setup
or from the menu:
Active device >Change settings

Figure 3.1 Setup in device

Note: \quad The settings for the various preset solutions are described in section 4.
The setting options offered by the software functions (inputs/outputs, loop control, etc.) are described in section 5.

Note: \quad Any changes to the parameters are effected only in the volatile memory, and must be saved subsequently in the device by way of the "Save setting in device" button (see arrow). The same effect is achieved by simultaneously pressing the two cursor keys on the KP200 control unit for approx. two seconds while at the menu level (see section 3.3).

Screen operation

For example:

Figure 3.2 Example of screen operation

Functions of buttons:

Explanation of setting

\square	$\rightarrow \quad$ Apply change and close screen
$\underline{\text { Cancel }} \quad \rightarrow \quad$ Reject change and close screen	
Apply	$\rightarrow \quad$Apply change (activate) and leave screen open.

For example:

Help function

In any input dialog box a Help function providing further information on the parameter can be called up by pressing the F1 key.
e.g. Speed control \rightarrow Actual speed filter screen.

Figure 3.3 Identification

Parameter number	Number of parameter
Abbreviation	Name, max. five characters (displayed in KP200)

Figure 3.4 Value range

Minimum/Maximum The value must be within this range (here: between 0 and 32 ms).
Factory setting After a device reset this value is automatically entered.

Figure 3.5 Access

Subject area For ease of handling the individual parameters are grouped into subject areas.
Read level At this level or above the parameter can be read.
Write level
At this level or above the parameter can be edited.

Figure 3.6 Format

For more information on the data and memory types, see "Memory type and data type" on page A-2.

3 User control structure

3.1.2 Parameter Editor

Parameter Editor

The Parameter Editor contains all the parameters of the device, divided into subject areas, as on the KP200 control unit. The reason for this is to provide experienced users with access to all the parameters of the device (depending on their user level). Note that changes to individual parameters may possibly not be supported by the preset solution.

Subject areas

For ease of handling the individual parameters are grouped into subject areas (parameter groups).

Parameter

The parameters are changeable variables which are all assigned a factory setting (FS). They have a fixed value range with a minimum and maximum value. The current parameter value is always displayed.

Menu: Tools - Parameter Editor

Figure 3.7 Parameter Editor

LUST

3.1.3 User levels

Note: The user levels protect against unauthorized access. Consequently, to protect the parameter setting of the inverter module parameter 01_MODE, in subject area "_KPAD", should always be reset to the lowest user level after adaptation.

Target group	Comments	User level 01-MODE	Password in FS ${ }^{\text {1) }}$
Layman	No access permission, for status monitoring only - No parameter setting - Display of basic parameters	1	1
Beginner	With basic knowledge for minimal operation • Expanded basic parameters editable • Expanded parameter display	2	1
Advanced	For commissioning and field bus connection • Parameter setting for standard applications	3	1
Expert	With control engineering skills • All control parameters editable • Expanded parameter display	4	1
Other	For system integrators	5	1

${ }^{1)} \mathrm{FS}=$ Factory setting
Table 3.1 Setting user levels

3.2 Operation with KeyPad KP200XL

Overview - KeyPad KP200XL

The KeyPad can be plugged directly into slot X4 of the servocontroller.

(1) SMARTCARD chipcard to save and transfer settings
(2) 3 -digit display, e.g. for parameter
(3) Current menu
(4) 5-digit display for parameter name and value
(5) Acceleration or braking ramp active
(6) Bar graph display, 10-character

Thine Call up menu branches or parameters; Save changes;
Start in "Control drive" mode
Thide Quit menu branches; Cancel changes; Stop in "Control drive" mode
(A) Select menu, subject area or parameter; Increase setting
(च) Select menu, subject area or parameter; Reduce setting
Figure 3.8 Operating and display elements of the KEYPAD KP200

Menu structure

Example parameter setting (PARA menu)

The KEYPAD KP200XL has a user-friendly menu structure which is identical to that of the KP100 for the
SmartDrive VF1000 frequency inverters and MasterControl MC6000/ MC7000 servocontrollers.

Actual values

- - select
- - display

Capacity indicator

SmartCard

- - read
- - write
- Write protection

Figure 3.9 Functions of the menus

- The parameters in the PARA menu are grouped into subject areas according to their functions, in order to provide a clearer overview.
- Only the parameters to which the current user level permits access can be changed.

1. Select PARA menu.
2. Select desired subject area with cursor keys and confirm with Start/Enter.
3. Select desired parameter with cursor keys (pay attention to user level).
4. The current value is displayed, with the last character flashing. Switch to the next character using the down key. Use the up key to change the flashing character. The fifth character at the extreme left indicates the preceding sign: $(-)=$ minus.

The last character can be entered as an exponent.
Save new value with Start/Enter or cancel (without saving) with Stop/Return.

Note: \quad The KEYPAD KP200XL Operation Manual gives more information on changing user level.

Read from/write to SmartCard:

CARD menu

Note: \quad For more information on operation with the KEYPAD refer to the KeyPad KP200XL Operation Manual.
Note: It is not possible to use the Card menu or save data on the SmARTCARD for position controlled operation modes!

Function	Meaning
READ > ALL	Read all parameters from SmARTCARD
READ > DRIVE	Read in partial data set (motor data only)
WRITE	Store all parameters on the SmARTCARD
LOCK	Write-protect the SmARTCARD
UNLOCK	Cancel the write protection

Table $3.2 \quad$ CARD menu

3 User control structure

3.3 Saving the settings

LUST

or:
Active device >Change settings

Rciual values ... \qquad 1

Save setting in device Cancel Help

The changes made can also be saved to a file.

Saving the settings to a file

Figure 3.11 Saving the setting

Depending on the preset solution, the CDD3000 has a range of data sets which together form the device configuration.

Save ...	With KeyPad to SmartCARD	With DriveManager to file
Device data (="Settings") (device settings and motor data)	Yes	yes (*.00D), (*.00T), (*.00X)
Process data (variables, flags and table position of sequence control)	No	yes (*.01D), (*.01T), (*.01X)
Process programs	No	yes (*.prg)

Table $3.3 \quad$ Saving the setting

Choose the file name (e.g. mydata). Then the data sets are selected depending on the preset solution. All files are saved under the chosen file names (e.g. mydata) with the appropriate extension (${ }^{*} .00 \mathrm{D}$). The device data can be assigned a description prior to saving.

Saving setting with KeyPad

The changes made can also be saved in the device using the KEYPAD. Switch to the Level menu by pressing the stop/return key repeatedly, then press and hold down the up and down cursor keys simultaneously for about three seconds. The save operation takes around six seconds.

1. Select menu.

Figure 3.12 Saving with KP200XL

LUST

3.4 Device status

CDD3000 status positioning

CDD3000 status

The "View" menu offers information on the device status.

This screen shows the status of positioning (basic setting or automatic mode) and indicates which sequence program (number xx) and which line of the sequence program (Nxxx) is currently being run.

The current line number of the sequence program can also be recorded with the digital scope.

The device status and any error messages are displayed here. An error can be reset with the "Reset" button.

- Power cut to electronics	CDD supplied with 24 V, no DC link voltage present
- Switch-on inhibit	Power stage enable ENPO not set
- Ready for start	ENPO set
- Control enabled	Loop control active current applied to motor
- Quick stop active	Emergency stop executed at max. torque
- Error	Device in error state (with indication of error)
- Flux build-up	Magnetic flux is built up in the motor
- Parameter setting	Parameters are changed

CDD3000 reference and actual values

Figure 3.13 CDD3000 reference and actual values

- $\mathbf{R}_{\text {eference }}=$ Position reference value in the unit set under Standardization
- $\mathbf{A}_{\text {ctual }}=$ Actual position value in the unit set under Standardization
- delta_s = Tracking error in the unit set under Standardization
- $\mathbf{N}_{\text {ref }}=\quad$ Speed reference value in revolutions per minute
- $\mathbf{N}_{\text {act }}=\quad$ Actual speed value in revolutions per minute
- $\mathbf{M}_{\text {ref }}=\quad$ Torque reference value in Newtonmeters
- $\mathbf{M}_{\text {act }}=$ Actual torque value in Newtonmeters
- $\mathbf{I}_{\text {act }}=$ Effective current value in Amperes

Figure 3.14 CDD3000 inputs and outputs IO and FCT
All analog and digital inputs and outputs are shown here. Either with their label (e.g. IS00), or with their function (e.g. AUTO = PosModautomatic mode). The options are toggled with the "IO" or "Fct" button

3.5 Commissioning

Commissioning procedure:

1. Initial commissioning based on Operation Manual:

The precondition is initial commissioning with the aid of the Operation Manual.
The user manual only covers adaptation of the software functions.

If the settings from the initial commissioning based on the Operation Manual are not adequate for your application:
2. Selection of optimum preset solution

The preset solutions record the typical

1applications of the positioning controllers.

The data set which best covers the specific application is selected.
3. Custom adaptation of the preset solution to the application

The preset solution serve as the starting point

1for application-oriented adaptation. Other function adaptations are made to the parameters in the function-oriented subject areas. Save your settings in the device!
4. Checking the set application solution

To preserve the safety of personnel and
 machinery, the application solution should only be checked at low speed. Make sure the direction of rotation is correct. In case of emergency the drive power stage can be disabled, and the drive stopped, by removing the ENPO signal.
5. Concluding commissioning

When you have successfully completed commissioning, save your settings (using the SmartCard or DriveManager) and store the data set in the device.

4 Preset solutions

4.1 Selecting preset solutions 4-3
4.1.1 Reference structure 4-7
$4.2 \quad$ Torque control (TCT_1) 4-11
4.2.1 Making basic settings 4-10
4.2.2 Setting function parameters 4-11
4.2.3 Terminal assignment 4-12
4.3 Speed control with external position control (SCT_1) 4-13
4.3.1 Making basic settings 4-15
4.3.2 Setting function parameters 4-16
4.3.3 Terminal assignment 4-17
4.4 Speed control with $\pm 10 \mathrm{~V}$ reference input (SCT_2, SCB_2) 4-18
4.4.1 Making basic settings 4-19
4.4.2 Setting function parameters 4-21
4.4.3 Terminal assignment 4-22
4.4.4 Control via field bus 4-23
4.5 Speed control with fixed speeds (SCT_3, SCB_3) 4-24
4.5.1 Making basic settings 4-25
4.5.2 Setting function parameters 4-28
4.5.3 Terminal assignment 4-29
4.5.4 Control via field bus 4-30
4.6 Speed control via pulse input (SCT_4, SCB_4) 4-31
4.6.1 Making basic settings 4-33
4.6.2 Setting function parameters 4-36
4.6.3 Terminal assignment 4-37
4.6.4 Control via field bus 4-38

LUST

4.7 Speed control, reference and control via field bus (SCB_5) 4-39
4.7.1 Making basic settings 4-40
4.7.2 Setting function parameters 4-41
4.7.3 Terminal assignment 4-42
4.8 Positioning, reference and control via field bus (PCB_2) 4-43
4.8.1 Making basic settings 4-44
4.8.2 Setting function parameters 4-53
4.8.3 Terminal assignment 4-54
4.9 Positioning with fixed positions (PCT_3, PCB_3) 4-55
4.9.1 Making basic settings 4-56
4.9.2 Setting function parameters 4-66
4.9.3 Terminal assignment 4-67
4.9.4 Control via field bus 4-69
4.9.5 Actuation 4-70
4.10 Positioning free programmable (PCT_4, PCB_4) 4-73
4.10.1 Overview of functions 4-74
4.10.2 Making basic settings 4-79
4.10.3 Special functions of the preset solution 4-97
4.10.4 Terminal assignment 4-106
4.10.5 Actuation 4-107
4.10.6 Control via field bus 4-108
4.10.7 Command set 4-109
4.10.8 Sequence programs 4-143
4.10.9 Program examples 4-145
4.10.10 Calculation aids 4-151

LUST

4.1 Selecting preset solutions

Initial commissioning...

With the DriveManager the desired preset solution can be selected, and its parameters set, quickly and easily in the course of first commissioning.

Figure 4.1 Selection of preset solutions in the DriveManager

Preset solutions

The preset solution is selected according to the type of drive task. A preset solution is a presetting of the drive controller which can subsequently be adapted to the application.

For more information on first commissioning refer to the CDD3000 Operation Manual.

The CDD3000 servocontroller provides a wide range of preset solutions, each described briefly in the DriveMANAGER. The application preset by a preset solution can optionally be controlled via the control terminals ($\mathrm{T}=$ Terminal) or over a field bus ($B=B u s$).

Bus	Abbreviation	Control mode, reference	Control via ...	Comments
0	OFF	User-defined	User-defined	
1	TCT_1	Torque control, 10 V	Terminal	
2	SCT_1	Speed control, external position control	Terminal	Reference via $\pm 10 \mathrm{~V}(8 \mathrm{kHz})$
3	SCT_2	Speed control, 10 V	Terminal	Reference via $\pm 10 \mathrm{~V} \mathrm{(1} \mathrm{kHz)}$
4	SCB_2	Speed control, 10 V	Field bus	Terminal
5	SCT_3	Selection via dig. Inputs		
6	SCB_3 control, fixed speeds	Speed control, fixed speeds	Field bus	Selection via dig. Inputs
7	SCT_4	Speed control, pulse input	Terminal	Master encoder X5
8	SCB_4	Speed control, pulse input	Field bus	Master encoder X5
9	SCB_5	Speed control, field bus	Field bus	
10	PCB_2	Positioning, field bus	Field bus	
11	PCT_3	Positioning, fixed position	Terminal	Selection via dig. Inputs
12	PCB_3	Positioning, fixed position	Field bus	Selection via dig. Inputs
13	PCT_4	Positioning	Terminal	Free programmable sequence program
14	PCB_4	Positioning	Free programmable sequence program	

Table 3.4 Preset solutions

For more information on first commissioning refer to the CDD3000 Operation Manual.

LUST

Torque control, $\pm 10 \mathrm{~V}$ reference (TCT_1)

Speed control with external position control (SCT_1)

Speed control, $\pm 10 \mathrm{~V}$ reference (SCT_2, SCB_2)

Speed control, fixed speeds (SCT_3, SCB_3)

Speed control, pulse input (SCT_4, SCB_4)

Speed control, reference and control via field bus (SCB_5)

This operation mode is suitable for tractive force control. The internal speed controller remains active and limits the speed (safety function). Control is via the control terminal.

This operation mode is suitable for moving multiple axes threedimensionally with an external path control or to approach any desired positions at different velocities. In this mode the servocontroller is coupled directly to a controller (PLC) which executes the position control and computes the position references. The PLC delivers a differential $\pm 10 \mathrm{~V}$ reference, which is processed by the servocontroller at a sampling rate of $8 \mathrm{kHz}(125 \mu \mathrm{~s})$. The high sampling rate ensures a low level of tracking error in the position control loop. Control is via the control terminal.

This operation mode is suitable for rotational drives in which the axle is driven at varying speeds. To this end, the servocontroller converts the differential $\pm 10 \mathrm{~V}$ reference input into a motor speed. The acceleration profile is programmable. Control is optionally via the control terminal (SCT_2) or the field bus (SCB_2).

This operation mode is suitable for traction or lifting drives in which the axle is driven at up to 8 pre-programmed speeds. The acceleration profile is programmable. Control is optionally via the control terminal (SCT_3) or the field bus (SCB_3).

This operation mode is suitable for tracking a master axle in speed synchronous mode or to convert the frequency signal of a stepper motor control into a rotation speed. Actuation is via signals with RS422 (X5) or HTL level (X2-ISD03, ISD04). The acceleration profile is programmable. Control is optionally via the control terminal (SCT_4) or the field bus (SCB_4).

This preset solution is suitable where the speed reference input is via a field bus in addition to the parameter setting and control of the controller. The acceleration profile is programmable.
All digital outputs can be set via the field bus. The status of the digital inputs can be read.

Electronic Gearing functionality is available in operation modes PCT4... and PCB4... .

LUST

4 Preset solutions

Positioning via field bus
(PCB_2)

Positioning, fixed positions
(PCT_3, PCB_3)

Positioning, free programmable (PCT_4, PCB_4)

This operation mode is suitable to specify a positioning set comprising of the target position, velocity and accelerations via the field bus, and to control the sequencing. The positioning profile is generated in the servocontroller and the positioning status is made available to the field bus. Various homing mode types integrated into the CDD3000 can be selected via the field bus.

This operation mode is suitable for approaching a maximum of 31 preprogrammed positions or for positioning of a specific positioning route. The parameterizable positioning sets each comprise a target position, mode (absolute-relative), velocity, and the accelerations. Various homing mode types integrated into the CDD3000 can be selected. Control is optionally via the control terminal (PCT_3) or the field bus (PCB_3).

This operation mode is suitable for inserting the controller into a customized positioning process or to integrate a sequence control into the servocontroller. To this end, the CDD3000 has a highly flexible positioning and sequence control with a simple and easily understood programming language. It permits time optimized or jerk limited absolute or relative positioning. Other functions, such as various homing mode types integrated into the CDD3000 and an indexing table positioning function, are available. Control is optionally via the control terminal (PCT_4) or the field bus (PCB_4).

4.1.1 Reference structure

The reference structure is adjusted to the application by the selection of the preset solution such that no adaptation is required for most applications.

There is one reference structure for speed-controlled mode see Figure 4.3 and one for the position-controlled mode see Figure 4.2

BUS	SETTING	MEANING
0	RCON	Reference constant 0
1	RAO	Reference of analog input 0
2	RA1	Reference of analog input 1
3	RSIO	Reference of serial interface RS232
4	RDIG	Reference of master encoder input X5
5	ROPT1	Reference of option module at slot 1
6	ROPT2	Reference of option module at slot 2
7	RFIX	Reference of fixed value 1-8
8	PTAB	Reference of driving set table 0-31
9	PMOD	Reference of sequence program

Table 3.5 Settings for parameters 280_RSSL1/281_RSSL2 and 289_SADD1/290_SADD2

Symbol	Meaning
\square	Reference source (input), in some cases with second characteristic set
	Reference selector (switch)
	Parameter
	Interim reference values (for display only)
\square	Limitation of reference value
\square	Mathematical influence

Table 3.6 Symbols used

Principle of reference input (position control)

Figure 4.2 Principle of reference input (position control)

Principle of reference input (speed/torque control):

Figure 4.3 Principle of reference input (speed/torque control)

LUST

4.2 Torque control (TCT_1)

Possible applications:

Tractive force control

Functionality:

- Scaleable analog reference ($\pm 10 \mathrm{~V}, 12$-bit resolution)
- Parameterizable speed limit
- Control of drive via I/O

Figure $4.4 \quad$ Torque control with $\pm 10 \mathrm{~V}$ reference input

4.2.1 Making basic settings

Basic settings...

Reference tab

Figure $4.5 \quad$ Reference tab

DM	Meaning	Value range	Unit	Parameter
10 V corresponds to	Standardization for analog input	± 32768	Nm	822 _RNA0 (IN)
Backlash	Backlash function for fault isolation at zero	$0-90$	$\%$	192_IADB0 (IN)
Filter	Filter for analog channel ISA00	$0-64$ Bus: $0-6$	ms	188_IADB0 (IN)

Table 4.1 Reference - basic settings

For more information on the analog inputs, see section 5.1.1.

4.2.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.

Note: In contrast to the basic settings, these functions are independent of the preset solution.

4.2.3 Terminal assignment

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$\hookleftarrow^{\text {ACTIV }}$	15	OSD01	Loop control active
$-\otimes \text { C_RDY }$	14	OSDOO	Device ready
	13	DGND	Digital ground
	12	ISD04	Not assigned
	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
START	8	ISD00	Start loop control
ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
$\xrightarrow[\sim]{\text { ISAO- }} \xrightarrow{\text { ISAO- }}$	2	ISAOO-	Differential analog reference -
—	1	ISAOO+	Differential analog reference +
$\begin{gathered} \text { CNC or } \\ \text { PLC } \end{gathered}$			

Figure 4.6 Terminal assignment for torque control, $\pm 10 \mathrm{~V}$ reference, control via terminal

4.3 Speed control with external position control (SCT_1)

Possible applications:

- Operation in path control or external position controller (e.g. PLC)

Functionality:

- Scaleable analog reference ($\pm 10 \mathrm{~V}, 12$-bit resolution)
- Minimum tracking error owing to reference sampling rate of $125 \mu \mathrm{~s}$
- Parameterizable encoder simulation
- Control of drive via I/O

Figure $4.7 \quad$ Example of a 3-axis path control

This preset solution is suitable

- for three-dimensional shifting of several different axes with an external path control.
- for approaching any positions at different speeds.

Explanatory notes:

Control structure:

- Only one encoder is required for torque, speed and position control. This saves on additional encoders and cabling.
- Resolution of analog inputs: ISA0 12-bit, ISA1 10-bit
- Sampling cycle, analog input ISAO: $8 \mathrm{kHz}(125 \mu \mathrm{~s})$
- Short sampling cycles of the control loops, resulting in a high control quality of the drive:

Torque control: $\quad 16 \mathrm{kHz}$
speed control: $\quad 8 \mathrm{kHz}$

Figure 4.8 Block diagram of control structure

In this operation mode the functions of the reference structure (speed ramps, reference switchover, smoothing time, reference inversion, ...) are ineffective.

LUST

4.3.1 Making basic settings

Basic settings...

Speed control with external position control, controlled via terminal X
Reference

Table 4.2 Reference - basic settings

For more information on the analog inputs, see section 5.1.1.

4.3.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.

4.3.3 Terminal assignment

Note: In contrast to the basic settings, these functions are independent of the preset solution.

Figure 4.10 Terminal assignment for speed control with external position control, control via terminal

4.4 Speed control with $\pm 10 \mathrm{~V}$ reference input (SCT_2, SCB_2)

Possible applications:

- Rotational drive, main spindle drive

Functionality:

- Scaleable analog reference (10 V, 12-bit resolution)
- Programmable time optimized acceleration profile
- Limit switch evaluation
- Control of drive via I/O (SCT_2)
- Control of drive via field bus (SCB_2)

Figure 4.11 Speed control with ± 10 V reference input

Note: \quad This preset solution is suitable for operation of the drive axle at different speeds without use of an external position control loop. If you wish to use an external position controller, we recommend the "speed control with external position control" preset solution, because in it the sampling time of the analog input is shorter, so the control result is better. The disadvantage is that the reference structure is bypassed and so is no longer usable.

4.4.1 Making basic settings

Basic settings...

Reference

Figure 4.12 Reference tab

DM	Meaning	Value range	Unit	Parameter
10 V corresponds to	Standardization for analog input	± 32768	rpm	822 _RNA0 (IN)
Backlash	Backlash function for fault isolation at zero	$0-90$	$\%$	192 _IADB0 (IN)
Filter	Filter for analog channel ISA00	$0-64$ Bus: $0-6$	ms	188 _IADB0 (IN)

Table 4.3 Reference - basic settings

Basic settings...

Speed profile

Speed Profile tab

Figure 4.13 Speed Profile parameter screen

DM	Meaning	Value range	Unit	Parameter
Acceleration ramp	Ramp generator for acceleration. Setting 0 means acceleration at max. torque.	$0-65535$	$\mathrm{rpm} / \mathrm{s}$	52 _ACCR (_SRAM)
Deceleration ramp	Ramp generator for deceleration. Setting 0 means deceleration at max. torque.	$0-65535$	$\mathrm{rpm} / \mathrm{s}$	102_DECR (_SRAM)
Smoothing time	The run- up and run-down time increases by the smoothing time. Attention:Does not work with quick- stop!	$0-2000$	ms	560-J TIME (_SRAM)

Table 4.4 Basic setting - Speed profile

Note: \quad The entire ramp generator can be deactivated by setting the acceleration or deceleration ramp parameter to 0 - that is, acceleration and deceleration at preset maximum torque.

J erk limitation with smoothing time JTIME

4.4.2 Setting function parameters

Note: In contrast to the basic settings, these functions are independent of the preset solution.

LUST

4 Preset solutions

4.4.3 Terminal assignment

Figure 4.14 Terminal assignment for speed control, ± 10 V reference, control via terminal

LUST

4.4.4 Control via field bus

Note: \quad For the preset solution SCB_2 the "EASYDrive Basic" bus setup should be used, retaining analog input ISAO as the reference source.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$\text { - }{ }^{\text {ACTIV }}$	15	OSD01	Loop control active
- © C_RDY	14	OSD00	Device ready
	13	DGND	Digital ground
	12	ISD04	Not assigned
	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	
- ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Differential analog reference -
	3	ISA01+	Differential analog reference +
ISAO-	2	ISA00-	Differential analog reference -
$\underset{\sim}{X X} \underset{\rightarrow}{\text { or }} \xrightarrow{I S A O+}$	1	ISAOO+	Differential analog reference +

Figure 4.15 Terminal assignment for speed control, $\pm 10 \mathrm{~V}$ reference, control via field bus

For more information refer to the user manual of the relevant field bus system.

4.5 Speed control with fixed speeds (SCT_3, SCB_3)

Possible applications:

- Traction or lifting drive

Functionality:

- Eight speeds
- Programmable time optimized acceleration profile
- Limit switch evaluation
- Control of drive via I/O (SCT_3)
- Control of drive via field bus (SCB_3)

Figure 4.16 Example of a lifting drive with quick/slow jog positioning.
The controller uses the encoder simulation to determine the position of the cabin.

4.5.1 Making basic settings

Basic settings...

Speed Profile tab

Speed control, fixed revolutions, conrolled via terminal
Speed profile \mid fixed speeds
Acceleration ramp (ACCR) $\quad 1 / \mathrm{min} / \mathrm{s}$
Deceleration ramp (DECR)
Smoothing time (JTIME)

Figure 4.17 Speed Profile tab

DM	Meaning	Value range	Unit	Parameter
Acceleration ramp	Ramp generator for acceleration. Setting 0 means acceleration at max. torque.	$0-65535$	rpm/s	52_ACCR (_SRAM)
Deceleration ramp	Ramp generator for deceleration. Setting 0 means deceleration at max. torque.	$0-65535$	rpm/s	102_DECR (_SRAM)
Smoothing time	The run-up and run-down time increases by the smoothing time. Attention:Does not work with quick- stop!	$0-2000$	ms	560-JTIME (_SRAM)

Table 4.5 Basic setting - Speed profile

Note: The entire ramp generator can be deactivated by setting the acceleration or deceleration ramp parameter to 0 - that is, acceleration and deceleration at preset maximum torque.

LUST

J erk limitation with smoothing time J TIME

Basic settings...
fixed speeds

This jerk limitation function delivers the following benefits:

- The mechanism is left heavily vibrated
- Material fatigue due to load changes is reduced
- A mechanism with play is subject to less deflection

Note: A quick stop (emergency stop) is always made without jerk limitation.

Fixed Speeds tab

Figure $4.18 \quad$ Fixed Speeds tab

Here the fixed speed references 1-8 are set which can be selected via digital inputs TB0 to TB2.

DM	Meaning	Value range	Unit	Parameter
Speed 0	Fixed speed 1	± 32764	rpm	$\begin{gathered} \text { 270_RFIX1 } \\ \left(_\right. \text {RFIX) } \end{gathered}$
Speed 1	Fixed speed 2	± 32764	rpm	$\begin{gathered} \text { 271_RFIX2 } \\ \text { (_RFIX) } \end{gathered}$
Speed 2	Fixed speed 3	± 32764	rpm	$\begin{gathered} \text { 272_RFIX3 } \\ \text { (_RFIX) } \end{gathered}$
Speed 3	Fixed speed 4	± 32764	rpm	$\begin{gathered} \text { 273_RFIX4 } \\ \text { (_RFIX) } \end{gathered}$
Speed 4	Fixed speed 5	± 32764	rpm	$\begin{gathered} \text { 274_RFIX5 } \\ \text { (_RFIX) } \end{gathered}$
Speed 5	Fixed speed 6	± 32764	rpm	$\begin{gathered} \text { 275_RFIX6 } \\ \text { (_RFIX) } \end{gathered}$
Speed 6	Fixed speed 7	± 32764	rpm	$\begin{gathered} \text { 276_RFIX7 } \\ \text { (_RFIX) } \end{gathered}$
Speed 7	Fixed speed 8	± 32764	rpm	$\begin{gathered} \text { 277_RFIX8 } \\ \left(_R F I X\right) \end{gathered}$

Table $4.6 \quad$ Fixed speeds - basic settings

Note: Inputs TB0 to TB2 are BCD coded.

Coding of fixed speeds with digital inputs TB0 to TB2

TB0	TB1	TB2	
0	0	0	Speed 0
1	0	0	Speed 1
0	1	0	Speed 2
1	1	0	Speed 3
0	0	1	Speed 4
1	0	1	Speed 5
0	1	1	Speed 6
1	1	1	Speed 7

Table $4.7 \quad$ Fixed speeds

4.5.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.
- \quad Torque reduction (SCALE function), see section 5.1.1.

Note: In contrast to the basic settings, these functions are independent of the preset solution.

4.5.3 Terminal assignment

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCC03	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$-\otimes)^{\text {REF }}$	15	OSD01	Reference reached
$-\otimes \text { C_RDY }$	14	OSD00	Device ready
	13	DGND	Digital ground
TB2	12	ISD04	Table index 2
TB1	11	ISD03	Table index 1
tB0	10	ISD02	Table index 0
INV	9	ISD01	Reverse direction
START	8	ISD00	Start loop control
ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISAOO+	Not assigned

Figure 4.19 Terminal assignment for speed control, fixed speeds, control via terminal

4.5.4 Control via field bus

Note: For the preset solution SCB_3 the "EASYDrive Basic" bus setup should be used.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$-\otimes \text { ACTIV }$	15	OSD01	Loop control active
- - C_RDY	14	OSD00	Device ready
	13	DGND	Digital ground
	12	ISD04	Not assigned
	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Not assigned
\bigcirc ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISA00+	Not assigned

Figure $4.20 \quad$ Terminal assignment for speed control, fixed speeds, control via field bus

For more information refer to the user manual of the relevant field bus system.

4 Preset solutions

4.6 Speed control via pulse input (SCT_4, SCB_4)

Possible applications:

- Speed synchronism (slave axle)
- Speed controlled operation on stepper motor control

Functionality:

- Speed reference via parameterizable master encoder input (TTL/HTL level)
- Reference as incremental encoder or pulse/direction signals
- Programmable time optimized acceleration profile
- Limit switch evaluation
- Control of drive via I/O (SCT_4)
- Control of drive via field bus (SCB_4)

Structure of reference processing

This preset solution is suitable

- where the CDD3000 has to track the precise speed of a master axle.
- where the CDD3000 has to convert the frequency signal of a controller into a rotation speed.

The following diagram shows the structure of reference processing:

Figure 4.22 Structure of reference processing

Note: \quad Since no position controller is involved, the angle positions of the master and slave axles drift apart. During the acceleration and braking phases the drift is dependent on the preset ramps and torque limits.
If you need angle synchronism, use preset solution PCB4... or PTC4... .

The master encoder input X5 permits incremental reference input for loop control. The reference generator is either the encoder simulation of another CDD3000 servocontroller, a standard commercially available incremental encoder or a stepper motor controller.

The signal shape corresponds either to the A / B incremental encoder signals or to pulse direction signals.

For more information on the master encoder input, see section 5.9.

4 Preset solutions

4.6.1 Making basic settings

Basic settings...
Speed control via pulse input:Master Encoder tab

Figure 4.23 Master Encoder tab

Type of encoder	Resolver			Optical encoder		
Encoder at X5 Number of pole pairs	R1 $p=1$	R2 $p=2$	R8 $p=3$	G1	G2,G3, G5, G6, G7	G8
Resolution of encoder evaluation ${ }^{1)}$ Increments per revolution Degrees	2^{14} 0.022°	2×2^{14} 0.011°	3×2^{14} 0.0073°	2^{25} 0.000011°	2^{25} 0.000011°	2^{12} 0.088°
Encoder simulation at X5 Standard pulses per revolution Zero pulses per revolution	1024^{*}	2048^{*}	3072^{*}	2048	2048	1024
	1	2	3	1	$0(!)$	1

${ }^{1)}$ Higher resolutions in encoder evaluation result in higher speed resolutions and thus smoother running of the drive. The resolution of the position controller is 16 bits, regardless of the encoder type used.

Table 4.8 Master encoder - basic settings

Example 1:

Speed synchronism

The master axle has a rotary encoder with 10.000 increments and a mechanical gear with a transmission ratio of 15 .

The slave axle has a mechanical gear with a transmission ratio of 5 .
On the gear output side the slave drive is to run half as fast as the master.

Solution:

- Signal type = Incremental encoder signals
- Lines per revolution master encoder is selected as 4096.
- Thus for the transmission ratio:

$\frac{\text { Numerator }}{\text { Denominator }}=\frac{$| Selected lines per rev |
| :---: |
| Master encoder |}{| Lines per rev |
| :---: |
| Master encoder |}$\cdot \frac{$| Gear transmission ratio |
| :---: |
| Slave |}{| Gear transmission ratio |
| :---: |
| Master |}$\cdot \frac{\text { Speed Slave }}{\text { Speed Master }}$

For more information on the master encoder input, see section 5.9.

Basic settings...

Speed profile

Speed Profile tab

Speed control, impulse input, controlled via terminal
Encoder Speed profile

Acceleration ramp (ACCR)
Deceleration ramp (DECR)
Smoothing time (JTIME)
1 _ 0 1 $\mathrm{min} / \mathrm{s}$
$1 \quad 1 / \mathrm{min} / \mathrm{s}$
$\ldots \mathrm{ms}$

Cancel Apply

Figure 4.24 Speed Profile tab

DM	Meaning	Value range	Unit	Parameter
Acceleration ramp	Ramp generator for acceleration. Setting 0 means acceleration at max. torque.	$0-65535$	rpm/s	52_ACCR (_SRAM)
Deceleration ramp	Ramp generator for deceleration. Setting 0 means deceleration at max. torque.	$0-65535$	rpm/s	102_DECR (_SRAM)
Smoothing time	The run-up and run-down time increases by the smoothing time. Attention:Does not work with quick- stop!	$0-2000$	ms	560-JTIME (_SRAM)

Table $4.9 \quad$ Basic setting - Speed profile

Note: The entire ramp generator can be deactivated by setting the acceleration or deceleration ramp parameter to 0 - that is, acceleration and deceleration at preset maximum torque.

4.6.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.
- \quad Torque reduction (SCALE function), see section 5.1.1.

Note: In contrast to the basic settings, these functions are independent of the preset solution.

4.6.3 Terminal assignment

X2	Des.	Function
20	OSD03	Not assigned
19	GND03	Not assigned
18	VCC03	Not assigned
17	OSD02	Not assigned
16	OSD02	Not assigned
15	OSD01	Reference reached
14	OSD00	Device ready
13	DGND	Digital ground
12	ISD04	Encoder track B
11	ISD03	Encoder track A
10	ISD02	Not assigned
9	ISD01	Not assigned
8	ISD00	Start loop control
7	ENP0	Hardware enable of power stage
6	DGND	Digital ground
5	U $_{V}$	Auxiliary voltage 24 V
4	ISA01-	Not assigned
3	ISA01+	Not assigned
2	ISA00-	Not assigned
1	ISA00+	Not assigned

(1) Optional HTL master encoder, depending on "Input" parameter on Master Encoder tab.

Figure 4.25 Terminal assignment for speed control, pulse input, control via terminal

4.6.4 Control via field bus

Note: For the preset solution SCB_4 the "EASYDRIVE Basic" bus setup should be used.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCC03	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
Q ${ }^{\text {REF }}$	15	OSD01	Reference reached
(1) $\Omega-\mathbb{M} \cdot \otimes$ C_RDY	14	OSD00	Device ready
	13	DGND	Digital ground
	12	ISD04	Encoder track B
	11	ISD03	Encoder track A
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Not assigned
- ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISA00+	Not assigned

(1) Optional HTL master encoder, depending on "Input" parameter on Master Encoder tab.

Figure 4.26 Terminal assignment for speed control, pulse input, control via field bus

For more information refer to the user manual of the relevant field bus system.

4.7 Speed control, reference and Control via field bus (SCB_5)

Possible applications:

- Speed control in multiple applications

Functionality:

- Speed reference input via field bus
- Four preset control modes (Drivecom, LUST-EasyDrive)
- Programmable time optimized acceleration profile
- Direct field bus access to I/O of drive controller
- Control and parameter setting of drive via field bus

Figure 4.27 Speed control, reference and control via field bus

LUST

4.7.1 Making basic settings

Basic settings...

Speed Profile tab

Speed control, reference and control via field bus
Speed profile

Acceleration ramp (ACCR)
Deceleration ramp (DECR)
Smoothing time (JTIME)

Qk Cancel
Apply

Figure 4.28 Speed Profile tab

DM	Meaning	Value range	Unit	Parameter
Acceleration ramp	Ramp generator for acceleration. Setting 0 means acceleration at max. torque.	$0-65535$	rpm/s	52 _ACCR (_SRAM)
Deceleration ramp	Ramp generator for deceleration. Setting 0 means deceleration at max. torque.	$0-65535$	rpm/s	102_DECR (_SRAM)
Smoothing time	The run-up and run-down time increases by the smoothing time. Attention:Does not work with quick- stop!	$0-2000$	ms	560-JTIME (_SRAM)

Table 4.10 Basic setting - Speed profile

Note: \quad The entire ramp generator can be deactivated by setting the acceleration or deceleration ramp parameter to 0 - that is, acceleration and deceleration at preset maximum torque.

4.7.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.

Note: In contrast to the basic settings, these functions are independent of the preset solution.

LUST

4.7.3 Terminal assignment

Note: \quad For the preset solution SCB_5 the "EASYDrive Basic" bus setup should be used.

Figure 4.29 Terminal assignment for speed control, reference and control via field bus

4.8 Positioning, reference and Control via field bus (PCB_2)

Possible applications:

- Multi-axis positioning system

Functionality

- Position reference via field bus
- Parameterizable time optimized driving profile
- User-definable travel units
- Eleven homing mode types
- Jog/manual mode
- Control and parameter setting of drive via field bus

Figure 4.30 Positioning, reference and control via field bus

LUST

4.8.1 Making basic settings

Basic settings...

Driving Profile tab

Figure 4.31 Driving Profile tab
In this screen the velocity and acceleration of the positioning set is specified in base units.

DM	Meaning	Value range	Unit	Parameter
Velocity	Velocity of positioning set	$\begin{aligned} & \hline \pm 2147483647 \\ & (\pm 32768 \text { revolutions }) \end{aligned}$	Customer unit defined on the Standardization tab	$\begin{gathered} \text { 552_POSMX } \\ \text { (_PRAM) } \end{gathered}$
Startup acceleration	Startup acceleration of positioning set in positive and negative direction	1-2147483647		$\begin{gathered} \text { 553_POACC } \\ \text { (_PRAM) } \end{gathered}$
Braking acceleration	Braking acceleration of positioning set in positive and negative direction	1-2147483647		$\begin{gathered} \text { 554_PODEC } \\ \text { (_PRAM) } \end{gathered}$
Smoothing time	The smoothing time (sinusoidal ramps) extends the braking process (positive+negative) and limits jerking.	0-2000	ms	560_J TIME (SRAM)

Table 4.11 Driving profile - basic settings

Standardization tab

Basic settings...
Standardization

Standardization assistant.

The speed

Figure 4.32 Standardization tab

In this screen you can enter the customer units for the travel ('way'), the velocity and the acceleration.

DM	Meaning	Value range	Unit	Parameter
The way Numerator	Travel standardization numerator	$1-65535$	Increments	700_POWGZ (_PSTD)
The way Denominator	Travel standardization denominator	$1-65535$	travel units	701_POWGN (_PSTD)
The velocity	Velocity standardization	$0-32764$	increments / ms	711_POAVE (_PSTD)
The acceleration	Acceleration standardization	$0-3600$	increments / ms^{2}	712_POABE (_PSTD)
corresponds to unit	Scaled customer unit for travel, velocity and acceleration of positioning.		1	766_POWUN 767_POSUN 768_POAUN (_PSTD)

Table 4.12 Standardization-basic settings

Note: Select the units with which you want to program the positions, velocities and accelerations. If you specify degrees as the unit, for example, the smallest division is 1 degree. The standardization factors for the travel ('way') must be integers. For the velocity and acceleration decimal places are accepted. Therefore rounding errors may occur for the velocity or acceleration.

Example: Parameter-setting in degrees required
\Rightarrow Reference $360^{\circ}=1$ motor revolution
\Rightarrow Configuration $\frac{\text { Numerator }}{\text { Denominator }}=\frac{65536 \text { incr. }}{360^{\circ}}=\frac{8192}{45}$

For notes on the standardization assistant, see section 4.10.2.

For more information and examples, see section 4.10 .10 preset solution "Positioning, free programmable".

Basic settings...

Homing mode

Homing Mode tab

Figure 4.33 Homing Mode tab
In this screen you can set the background conditions for homing.

DM	Meaning	Value range	Unit	Parameter
Reference cam polarity	Defines whether the reference cam operates as a normally closed or normally open contact.	```Positive = normally open (0) Negative = normally closed (1)```	1	$\begin{aligned} & \text { 723_PORPO } \\ & \text { (PRR) } \end{aligned}$
Reference velocities	Defines the positioning velocities during homing.	0-2147483647	Customer unit defined on the Standardization tab	724 POVR1 725 POVR2 726_POVR3 (PRR)
Homing mode type	Defines the positioning curve during homing.	$0 \ldots 10$	1	$\begin{aligned} & \text { 722_PORTY } \\ & \text { (PRR) } \end{aligned}$
Zero correction	Offset value for actual position after homing. Shift of machine zero relative to reference point.	± 2147483647	Customer unit defined on the Standardization tab	$\begin{aligned} & \text { 717_PONKR } \\ & \text { (PRR) } \end{aligned}$
Zero search	The homing run can only be made to the reference cam, even ignoring the zero pulse of the encoder.	$\begin{aligned} & \hline \text { OFF (0) } \\ & \text { ON (1) } \end{aligned}$	1	$\begin{aligned} & \text { 792_POZP } \\ & \text { (_PRR) } \end{aligned}$

Table 4.13 Homing mode - basic settings

Homing mode

The object of the homing mode is to establish an absolute position reference (referred to the entire axle), and it must usually be executed once after power-up, because normal encoders (except multi-turn) only register the position within one revolution.

Example: Homing mode type 0

Figure 4.34 Homing mode type 0. The current actual position is set as the reference point. No homing run is carried out. Example: Conveyor belt.

Example: Homing mode type 1

Figure $4.35 \quad$ Homing mode type 1. The reference cam is between the two hardware limit switches. The zero pulse to be evaluated is the first one after exiting the cam in negative direction.

For more information see section 4.11.2 "Making basic settings".

Basic settings...

Manual mode

Jog Mode tab

Figure 4.36 Jog Mode tab
In this screen you specify the maximum positioning velocity and the velocities of jog mode (manual mode) in customer units.

DM	Meaning	Value range	Unit	Parameter
Maximum process speed	The positioning control is limited to this value. Asynchronous machines can be operated up to rated speed (no field weakening range).	$1-2147483647$	Customer unit defined on Standardization tab	704_POVMX (_PBAS)
Quick jog	Velocity of quick jog (via digital input or in Manual menu). Quick jog is activated by additionally actuating the second jog input while in slow jog mode.	$1-2147483647$	Customer unit defined on Standardization tab	715_POEGW
(PBAS)				

Table 4.14 Jog mode - basic settings

LUST

Basic settings...

Acceleration profile

Acceleration Profile tab

Figure 4.37 Acceleration Profile tab
In this screen the maximum accelerations and the acceleration mode are entered.

4 Preset solutions

DM	Meaning	Value range	Unit	Parameter
Acceleration modes Positive direction, Negative direction	Choose between linear and sinusoidal ramps. The sinusoidal ramps are created by limiting the change over time of the acceleration, the jerk. In sinusoidal acceleration the target position is reached later by the amount of the smoothing time.	$\begin{gathered} \operatorname{Lin}(0) \\ \operatorname{SiN}^{2}(1) \end{gathered}$	I	$\begin{gathered} \text { 705_POBEP } \\ 706 \text { POBBEN } \\ \text { (_PRAM) } \end{gathered}$
Maximum Startup acceleration Linear + , Linear -	Linear + determines the maximum permissible acceleration on startup in positive direction, linear - in negative direction.	1-2147483647	Customer unit defined on the Standardization tab	$\begin{gathered} \text { 707_POLAP } \\ \text { 708_POLAN } \\ \text { (_PRAM) } \end{gathered}$
Maximum Braking acceleration Linear + , Linear -	Linear + determines the maximum permissible acceleration on braking in positive direction, linear - in negative direction.	1-2147483647	Customer unit defined on the Standardization tab	$\begin{gathered} \text { 709_POBLP } \\ \text { 710-POBLN } \\ \text { (_PRAM) } \end{gathered}$

Table 4.15 Acceleration profile - basic settings

Note: \quad This acceleration profile applies only to homing mode and jog mode.
In automatic mode the acceleration preset on the Driving Profile tab applies.

Limit switch tab

Basic settings...

Figure 4.38 Limit switch tab

DM	Meaning	Value range	Unit	Parameter
Software limit switch positive	Software limit switch in positive axle direction	± 2147483648	Customer unit defined on the Standardization tab	718_POSWP (PBAS)
Software limit switch negative	Software limit switch in negative axle direction	± 2147483648	Customer unit defined on the Standardization tab	719_POSWN (_PBAS)
Braking ramp	Braking ramp in effect when the software limit switch is active	$0-65535$	$\mathrm{rpm} / \mathrm{s}$	496_STOPR (_SRAM)

Table 4.16 Limit switch - basic settings

With the software limit switches the travel range can be limited (referred to the machine zero; see Homing Mode tab). Their parameters should be set before those of the hardware limit switches - that is: first the respective software limit switch, then the hardware switch, and then the mechanical end stop. When a software limit switch is reached, braking is applied by the adjustable braking ramp and an error message is sent. If both parameters are set $=0$, no monitoring is carried out. Before and during the homing run the software limit switches are not monitored.

4.8.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.
- Torque reduction (SCALE function), see section 5.1.1.
- Limit switch evaluation, see section 5.1.2

Note: In contrast to the basic settings, these functions are independent of the preset solution.

LUST

4.8.3 Terminal assignment

Note: With the preset solution PCB_2 use the "EASYDRIVE DirectPOS" bus setup.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$-\otimes^{\text {EFLW }}$	15	OSD01	No tracking error
	14	OSD00	Device ready
	13	DGND	Digital ground
RECAM	12	ISD04	Reference cam
- ENPO	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Not assigned
	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISA00+	Not assigned

Figure 4.39 Terminal assignment for positioning, reference and control via field bus

Note: For more information refer to the user manual of the relevant field bus system.

4 Preset solutions

4.9 Positioning with fixed positions (PCT_3, PCB_3)

Possible applications:

- Positioning with external sequence control

Functionality:

- 31 positioning sets
- Parameterizable time optimized driving profile
- User-defined travel units
- Eleven homing mode types
- Jog/manual mode
- Control of drive via I/O

Figure 4.40 Positioning with fixed position, control via terminal

Reference processing is presented in more detail in the following diagram:

Reference position reached
Figure 4.41 Reference processing

LUST

4.9.1 Making basic settings

Basic settings...

Position Table tab

Figure 4.42 Position Table tab
By making entries in the "table", up to a maximum of 31 positioning sets can be programmed. The positioning set number at the same time corresponds to the binary code which must be applied to control inputs TB0 to TB4 to select the set.

Note: Inputs TB0 to TB4 are BCD coded.

DM	Meaning	Value range	Unit	Parameter
Smoothing time	J erk limitation is activated if "sinusoidal ramps" are set on the Driving Profile tab.	0-2000	ms	$\begin{aligned} & \text { 560_JTIME } \\ & \text { (_SRAM) } \end{aligned}$
Start condition for driving set selection via terminal	There are two start conditions for activating the positioning sets: 1. Activate when target position reached (REFR). With the LowHigh edge at the enable table position input (TBEN) the binary code applied at inputs TBO...TB4 is read in, the corresponding entry in the table is worked through and positioning is started. If a further Low-High edge occurs at the TBEN input during positioning, it is buffered. When the target position is reached the buffer is emptied, the binary code applied at inputs TBO...TB4 is read in, the corresponding entry in the table is worked through and the new positioning is started. As a result, a new positioning job is not started until the target position of the preceding job has been reached. The buffer is erased with "ENPO" or "Start control". Tip: The buffer can also be emptied by sending a positioning job to the same target position. 2. Activate immediately (directly) (DIR). With the High edge at the "enable table position" input the binary code applied at inputs TB0 ... TB4 is read in and executed directly - that is, any positioning still in progress is aborted.	$\begin{gathered} \hline \operatorname{REFR}(0) \\ \operatorname{DIR}(1) \end{gathered}$	1	$\begin{gathered} \text { 770_POTBS } \\ \text { (_PBAS) } \end{gathered}$

Table $4.17 \quad$ Position table - basic settings

LUST

A positioning set comprises:

DM	Meaning	Unit	Example	Parameter
Target position	Target position of the positioning set. In relative positioning the preceding sign determines the direction of rotation (pos. $=0$, neg. = 0).	Unit set on the "Standardization" tab. Base unit is increments (65536 per revolution).	$\frac{65536}{360}=\frac{8192}{45}$ corresponds to unit: degrees	$\begin{gathered} 555 \text { _PDPOS } \\ \text { (_PSET) } \end{gathered}$
Mode	Mode of positioning (absolute or relative)	$\begin{aligned} & \text { absolute } \rightarrow 0 \\ & \text { relative } \rightarrow 1 \end{aligned}$		$\begin{gathered} 556 \text { _PDMOD } \\ \text { (PSET) } \end{gathered}$
Velocity	Process speed for this positioning set	The unit set on the "Standardization" tab. Base unit is "increments per ms".	1.092225 increments/ms ${ }^{2}$ corresponds to the unit rpm	$\begin{gathered} 557 \text { _PDSPD } \\ \text { (_PSET) } \end{gathered}$
- Startup acceleration	Maximum acceleration on startup for this positioning set	The unit set on the "Standardization" tab. Base unit is "increments per ms" ${ }^{2}$.	0.001083 increments/ms ${ }^{2}$ corresponds to the unit rpm/sec	$\begin{aligned} & \text { 558_PDALL } \\ & \text { (_PSET) } \end{aligned}$
- Braking acceleration	Maximum (negative) acceleration on braking for this positioning set	The unit set on the "Standardization" tab. Base unit is "increments per ms" ${ }^{2}$.	0.001083 increments/ms ${ }^{2}$ corresponds to the unit rpm/sec	$\begin{gathered} 559 \text { PPDDEL } \\ \text { (_PSET) } \end{gathered}$

Table $4.18 \quad$ Positioning sets

Standardization tab

Basic settings..

Standardization

Figure 4.43 Standardization tab

LUST

In this screen you can enter the customer units for the travel ('way'), the velocity and the acceleration.

DM	Meaning	Value range	Unit	Parameter
The way Numerator	Travel standardization numerator	1-65535	Increments	$\begin{gathered} \text { 700_POWGZ } \\ \text { (_PSTD) } \end{gathered}$
The way Denominator	Travel standardization denominator	1-65535	travel units	$\begin{gathered} \text { 701_POWGN } \\ \text { (_PSTD) } \end{gathered}$
The velocity	Velocity standardization	0-32764	increments[ms]	$\begin{aligned} & \text { 702_POAVE } \\ & \text { (_PSTD) } \end{aligned}$
The acceleration	Acceleration standardization	0-3600	increments[ms ${ }^{2}$]	$\begin{gathered} \text { 703_POABE } \\ \text { (_PSTD) } \end{gathered}$
corresponds to unit	Scaled customer unit for travel, velocity and acceleration of positioning	1	1	$\begin{gathered} \text { 766_POWUN } \\ 767 \text { POSUUN } \\ \text { 768_POAUN } \\ \text { (_PSTD) } \end{gathered}$

Table 4.19 Standardization - basic settings

Note: Select the units with which you want to program the positions, velocities and accelerations. If you specify degrees as the unit, for example, the smallest division is 1 degree. The standardization factors for the travel ('way') must be integers. For the velocity and acceleration decimal places are accepted. Therefore rounding errors may occur for the velocity or acceleration.

Example: Parameter-setting in degrees required
\Rightarrow Reference $360^{\circ}=1$ motor revolution
\Rightarrow Configuration $\frac{\text { Numerator }}{\text { Denominator }}=\frac{65536 \text { incr. }}{360^{\circ}}=\frac{8192}{45}$

For notes on the standardization assistant, see section 4.10.2
\qquad

For more information and examples, see section 4.11.10, preset solution "Positioning, free programmable".

Basic seltings...

Homing mode

Homing Mode tab

Figure 4.44 Homing Mode tab
In this screen you can set the background conditions for homing.

DM	Meaning	Value range	Unit	Parameter
Reference cam polarity	Defines whether the reference cam operates as a normally closed or normally open contact.	```Positive = normally open (0) Negative = normally closed (1)```	1	$\begin{gathered} \text { 723_PORPO } \\ \text { (_PRR) } \end{gathered}$
Reference velocities	Defines the positioning velocities during homing.	0-2147483647	Customer unit defined on Standardization tab	$\begin{gathered} \text { 724_POVR1 } \\ 725 \text {-POVR2 } \\ 726 \text {-POVR3 } \\ \text { (PRR) } \end{gathered}$
Homing mode type	Defines the positioning curve during homing.	$0 . . .10$	1	$\begin{array}{\|c} \hline \text { 722_PORTY } \\ \text { (_PRR) } \end{array}$
Zero correction	Offset value for actual position after homing. Shift of machine zero relative to reference point.	± 2147483647	Customer unit defined on Standardization tab	$\begin{gathered} \text { 717_PONKR } \\ \text { (_PRR) } \end{gathered}$
Zero search	The homing run can only be made to the reference cam, even ignoring the zero pulse of the encoder.	$\begin{aligned} & \text { OFF (0) } \\ & \text { ON (1) } \end{aligned}$	1	$\begin{gathered} 792 \text { POZZ } \\ \text { (_PRR) } \end{gathered}$

Table 4.20 Homing mode - basic settings

4 Preset solutions

Homing mode

The object of the homing mode is to establish an absolute position reference (referred to the entire axle), and it must usually be executed once after power-up, because normal encoders (except multi-turn) only register the position within one revolution.

Example: Homing mode type 0

Figure 4.45 Homing mode type 0. The current actual position is set as the reference point. No homing run is carried out. Example: Conveyor belt.

Example: Homing mode type 1

Figure 4.46 Homing mode type 1. The reference cam is between the two hardware limit switches. The zero pulse to be evaluated is the first one after exiting the cam in negative direction.

For more information see section 4.11.2 "Making basic settings".

Basic settings...

Manual mode

Jog Mode tab

Figure 4.47 Jog Mode tab
In this screen you specify the maximum positioning velocity and the velocities of jog mode (manual mode) in customer units.

DM	Meaning	Value range	Unit	Parameter
Maximum process speed	The positioning control is limited to this value. Asynchronous machines can be operated up to rated speed (no field weakening range).	$1-2147483647$	Customer unit defined on Standardization tab	704_POVMX (_PBAS)
Quick jog	Velocity of quick jog (via digital input or in Manual menu). Quick jog is activated by additionally actuating the second jog input while in slow jog mode.	$1-2147483647$	Customer unit defined on Standardization tab	715_POEGW (_PBAS)
Slow jog	Velocity of slow jog (via digital input or in Manual menu).	$1-2147483647$	Customer unit defined on Standardization tab	716_POSGW (_PBAS)

Table 4.21 Jog mode - basic settings

LUST

Grundeinstellungen...
Driving profile

Driving Profile tab

Figure $4.48 \quad$ Driving Profile tab
Here you define the mode of acceleration and the maximum accelerations (startup and braking, negative and positive).

DM	Meaning	Value range	Unit	Parameter
Acceleration modes in positive direction, negative direction	Choose between linear and sinusoidal ramps. The sinusoidal ramps are created by limiting the change over time of the acceleration, the jerk. In sinusoidal acceleration the target position is reached later by the amount of the smoothing time.	$\begin{aligned} & \operatorname{Lin}(0) \\ & \operatorname{SiN}^{2}(1) \end{aligned}$	1	$\begin{gathered} \text { 705_POBEP } \\ \text { 706_POBEN } \\ \text { (_PRAM) } \end{gathered}$
Maximum startup acceleration rate Linear + Linear -	Linear+ determines the maximum permissible acceleration on startup in positive direction, linear- in negative direction.	1-2147483647	Customer unit defined on the Standardization tab	$\begin{gathered} \text { 707_POLAP } \\ \text { 708_POLAN } \\ \text { (_PRAM) } \end{gathered}$
Maximum braking acceleration rate Linear + Linear -	Linear+ determines the maximum permissible acceleration on braking in positive direction, linear- in negative direction.	1-2147483647	Customer unit defined on the Standardization tab	$\begin{gathered} \text { 709_POBLP } \\ \text { 710_POBLN } \\ \text { (_PRAM) } \end{gathered}$

Table 4.22 Driving profile - basic settings

Note: This acceleration profile applies only to homing mode and jog mode.
In automatic mode the acceleration preset on the Driving Profile tab applies.

Limit switch tab

Basic settings..

Limit switch

Figure $4.49 \quad$ Limit switch tab

DM	Meaning	Value range	Unit	Parameter
Software limit switch positive	Software limit switch in positive axle direction	± 2147483648	Customer unit defined on the Standardization tab	718_POSWP (PBAS)
Software limit switch negative	Software limit switch in negative axle direction	± 2147483648	Customer unit defined on the Standardization tab	719_POSWN
Braking ramp	Braking ramp in effect when the software limit switch is active	$0-65535$	$\mathrm{rpm} / \mathrm{s}$	496_STOPR (_SRAM)

Table $4.23 \quad$ Limit switch - basic settings
With the software limit switches the travel range can be limited (referred to the machine zero; see Homing Mode tab). Their parameters should be set before those of the hardware limit switches - that is: first the respective software limit switch, then the hardware switch, and then the mechanical end stop. When a software limit switch is reached, braking is applied by the adjustable braking ramp and an error message is sent. If both parameters are set $=0$, no monitoring is carried out. Before and during the homing run the software limit switches are not monitored.

4.9.2 Setting function parameters

Once the preset solution, its basic setting and the motor data have been set, general function parameter settings can also be made.

- Limit values (e.g. max. torque and max. speed), see section 5.4.1.
- Inputs/outputs (e.g. "Reference reached" message), see section 5.1/5.2.
- Brake actuation, see section 5.1.2.
- Parameterizable encoder simulation, see section 5.9.1.
- Torque reduction (SCALE function), see section 5.1.1.
- Limit switch evaluation, see section 5.1.2

Note: In contrast to the basic settings, these functions are independent of the preset solution.

LUST

4.9.3 Terminal assignment

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCC03	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$-\otimes \underbrace{\text { R_RTI_O }}$	15	OSD01	Standstill
	14	OSD00	Device ready
	13	DGND	Digital ground
RECAM	12	ISD04	Reference cam
- TBEN	11	ISD03	Enable table position
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Start loop control
- ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISAOO+	Not assigned

Figure 4.50 Terminal assignment $1 / 2$ for positioning with fixed positions, control via terminal

Note: In the basic configuration (without user module) only 4 positions ($2^{2}=4$) are possible. For terminal expansion user module UM8I40 is additionally required.

Terminal expansion UM8140:

	X15	Des.	Function
	35	OED03	Not assigned
$\otimes^{\text {EFLLW }}$	34	OED02	No tracking error
- $\otimes^{\text {REFOK }}$	33	OED01	Reference point defined
. $-\otimes$ REF	32	OEDOO	Reference reached
	31	DGND	Digital ground
TIPM	29	IED07	J og mode, negative direction
\rightarrow TIPP	28	IED06	Jog mode, positive direction
	27	IED05	Not assigned
TB4	26	IED04	Speed or position table index 4
${ }^{\text {TB3 }}$	25	IED03	Speed or position table index 3
- TB2	24	IED02	Speed or position table index 2
$\sim_{\text {TB1 }}$	23	IED01	Speed or position table index 1
TB0	22	IED00	Speed or position table index 0
GND >	2	DGND	Digital ground
+24 V >	1	U_{V}	24 V DC supply, feed

Figure 4.51 Terminal assignment 2/2 for positioning, fixed positions, control via terminal

4.9.4 Control via field bus

Note: For the preset solution PCB_3 the "EasyDrive TablePos" bus setup should be used.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
	15	OSD01	Standstill
	14	OSD00	Device ready
	13	DGND	Digital ground
RECAM	12	ISD04	Reference cam
- ENPO	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Not assigned
	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISAOO-	Not assigned
	1	ISA00+	Not assigned

Figure 4.52 Terminal assignment for positioning, field positions, control via field bus

For more information refer to the user manual of the relevant field bus system.

LUST

4.9.5	Activation is via the inputs: ENPO, START control, (enable table position) and inputs TB0 to TB4 (position table index 0 to 4) and optionally TIPP/ TIPM (jog range in positive and negative direction of rotation).	
Step	Action	Comment
1	With inputs "ENPO" and "START control" the power stage is enabled.	The motor shaft is position controlled.
2	With the "Enable table position" input and TB0 to TB4 $=0 \mathrm{~V}$, (i.e. positioning set 0) a homing run can then be carried out.	The matching homing mode type is set on the "Homing mode" tab beforehand. After a reinitialization (poweron), a homing run must first be carried out before a positioning set can be requested.
3	Then with the "Enable table position" input the binary code applied at inputs TB0 to TB4 (= positioning set) can be executed.	There are two start conditions for activating the positioning sets. Activate when all target positions reached or ... Activate immediately (directly) See "Position Table" tab.
4	Optionally, inputs TIPP/TIPM can be used to move in positive and negative direction in jog mode.	An ongoing positioning operation of a positioning set has priority, i.e. is run first. Only when it is done can jog mode be started.

Table 4.24 Activation

Example of a positioning operation with fixed positions

Figure 4.53 Example of positioning with fixed positions

Input on Position Table tab for example

Input on Standardization tab for example
(using standardization assistant)

Set no.	Target position [degrees]	Mode	Velocity [rpm]	Startup acceleration [rpm/sec]	Braking acceleration [rpm/sec]
1	360	absolute	1000	1000	1000
2	90	relative	2000	1000	1000
3	180	relative	2000	1000	1000
4	-360	relative	3000	2000	2000
5	720	absolute	3000	2000	2000
6	-360	absolute	3000	2000	2000

Table 4.25 Input on Position Table tab for example

- The way $\frac{65536}{360}=\frac{8192}{45}$ corresponds to unit: degrees
- The velocity 1,0922 incr./ms corresponds to the unit rpm
- The acceleration $0.001803 \mathrm{incr} / \mathrm{ms}^{2}$ corresponds to the unit rpm/sec.
- The start condition is: Activate when old target position reached (REFR).

Note: \quad See also Figure 4.43 on Page 4-57

4.10 Positioning free programmable (iMotion)
 (PCT_4, PCB_4)

Possible applications:

- Single axle positioning system
- sequence control

Functionality:

- Individually programmable positioning sequences
- Parameterizable time optimized driving profile
- User-definable travel units
- Eleven homing mode types
- Indexing table positioning
- Jog/manual mode
- Control of drive via I/O (PCT_4)
- Control of drive via field bus (PCB_4)

4 Preset solutions

4.10.1 Overview of functions

Positioning controller CDD3000

The CDD3000 servocontroller has an integrated single-axle positioning and sequence control. This results in major advantages over the conventional split between a servocontroller with torque and speed control and a separate, higher-level positioning and sequence control.

CDD3000

Figure 4.54 Layout of a positioning system

Properties of the CDD3000 positioning controller

- Reduced wiring based on integrated positioning control
- Single-axle, slim design
- Same termination technique throughout the power range
- Standalone operation
- Optimum tuning of positioning control with direct access to the servocontroller system variables
- Digital position reference input in $250 \mu \mathrm{~s}$ cycle, synchronous with speed control, resulting in higher quality of positioning
- Standard resolution 16 bits (65536 increments) per revolution
- Resolution of position controller internally 20 bits
- 9 different types of homing run

Programming offers the following facilities

- Simple, easy-to-understand programming language
- High degree of flexibility in writing sequence programs
- 100 process programs with up to 700 program sets
- Absolute and relative positioning, endless travel (e.g. conveyor belts)
- Time-optimized or non-bucking positioning (linear or sinusoidal ramps)
- Variables, timers, numerators and flags can be used and simple programmable logic control functions can be simulated

Areas of application

Based on its high degree of flexibility and programming, the single-axle position controller can provide high-precision positioning and time/pathoptimized speed profiles in many different applications.

Common areas of application are:
$>$ Handling equipment (parts positioning, mounting, sorting, palletizing, etc.)

- Pressing
$>$ Feed drives, stop positioning
$>$ Indexing tables
$>$ Special machines, e.g. for cutting to length and metering

Figure 4.55 Linear drive

Submodes of the position controller

In the Positioning, free programmable preset solution there are the following submodes:

1. Manual mode

Precondition: Input IS01 "AUTO" = Low level

- Setup mode: Positioning and control commands are transmitted from the PC via the serial interface and executed directly by the servocontroller (with Manual button).
- Jog mode: The axle can be positioned in slow or quick jog mode. This can also be activated from the Manual menu orby way of two inputs ("Jog+" or "Jog-" function).

2. Automatic mode

- The positioning control works through the
 selected process program. Automatic mode is selected by way of the input IS01 "AUTO" = High level.

3. Homing mode

- In manual and in automatic mode
- In the homing run the axle runs until the reference cam (mechanical, inductive or capacitive proximity switch) is detected at the input IE04 "Reference cam" and a zero position of the encoder is reached.
- The object of the homing mode is to establish an absolute position reference (referred to the entire axle), and it must usually be executed once after power-up, because normal encoders only register the position within one revolution.

Exceptions:Infinite moving axles (e.g. conveyor belts, indexing tables) which require no absolute position reference over multiple revolutions or use of multi-turn encoders which can register the position over a large number of revolutions (type G3, G6-Multiturn).

Time response of the position controller
For greater clarity: The comparison with the programmable logic control shows the different mode of functioning and the differing time response.

Comparison:	PLC	CDD3000
Principle of function	Fixed cycle: Read inputs, run through complete program, set outputs	Sequence is determined by program. Next command is usually only executed when the preceding one has been completed (e.g. target position reached).
Programming	with Instruction List, Ladder Diagram or Function Block Diagram; flags indicate the current status	Similar to BASIC programming language with step commands and subroutines
Processing speed	typically $0.5 \mathrm{~ms} / 1 \mathrm{~K}$ instructions (e.g. S7-300)	$1 \mathrm{~ms} /$ command, so-called "set-to-set execution time" (for simple commands the same time is reserved as for complex positioning commands)
Response time to an input	depending on length of PLC cycle, typically approx. 10 to 20 ms (exception: interrupt input)	depending on program length (e.g. 1 ms , if input is polled in next set)
Sampling time of the position control	Typically 1 to 5 with PLC with positioning card (without fine interpolation), speed input analog via $\pm 10 \mathrm{~V}$	$250 \mu \mathrm{~s}$ position control, speed input digital

(1)- PLC cycle; (2) - positioning core

Table 4.26 Time response of the positioning controller

Accuracy and time response

The data determine the achievable positioning accuracy of the drive and the time sequence of a program in advance. This delivers information, for example, as to how long a signal must be applied to an input as a minimum, or how long it takes until an output is set.

Correct time sequencing of a process program must always be checked!

Accuracy and time response			16
Position resolution on the motor shaft	$\leq \pm 0,5^{\prime}$ $\leq \pm 10^{\prime}$	angle minutes	Optical encoders (sin/cos) Resolver
Positioning accuracy on the motor shaft ${ }^{1)}$	1	ms	
Set-to-set execution time	1	ms	
Read inputs / Set outputs	1	ms	
Positioning commands GO (program editing is immediately resumed)	2	ms	plus positioning time
Positioning commands GOW (program editing is resumed only when the target position is reached)	2	ms	
Read status	$1-2$	ms	
Change acceleration values in the program (SET K15 ... K24)	≥ 20	ms	
Time between selection of automatic mode and subsequent start command	≥ 20		

${ }^{1)}$ Also consider the inaccuracies which may additionally result from the mechanism (torsion and slack).

Table 4.27 Accuracy and time response

4.10.2 Making basic settings

Basic settings...

Standardization tab

Figure 4.56 Standardization tab, indexing table setting
In this screen the customer units for the travel ('way'), the velocity and the acceleration are entered.

DM	Meaning	Value range	Unit	Parameter
The way Numerator	Travel standardization numerator	$1-65535$	Increments	700_POWGZ (_PSTD)
The way Denominator	Travel standardization denominator	$1-65535$	way units	701_POWGN (_PSTD)
The velocity	Velocity standardization	$1-65535$	Increments / ms	702_POAVE (_PSTD)
The acceleration	Acceleration standardization	$1-3600$	increments / ms^{2}	703_POABE (_PSTD)

Table 4.28 Standardization - basic settings

DM	Meaning	Value range	Unit	Parameter
corresponds to unit	Standardized customer unit for travel ('way'), velocity and acceleration of positioning	1	1	766 _POWUN 767 _POSUN 768 _POAUN (_PSTD)
Indexing table application	Within a revolution of the indexing table travel optimized positioning is carried out	OFF (0) ON (1)	1	763_PORTA (_PBAS)
Number of angle units per revolution	$1-2146483647$	Increments/ revolution	764_PONAR (_PBAS)	

Table 4.28 Standardization - basic settings

Note: Select the units with which you want to program the positions, velocities and accelerations. If you specify degrees as the unit, for example, the smallest division is 1 degree. The standardization factors for the travel ('way') must be integers. For the velocity and acceleration decimal places are accepted. Consequently, no rounding errors can occur for the travel.

$$
\begin{aligned}
& \text { Example: Parameter-setting in degrees required } \\
& \Rightarrow \text { Reference } 360^{\circ}=1 \text { motor revolution } \\
& \Rightarrow \text { Configuration } \frac{\text { Numerator }}{\text { Denominator }}=\frac{65536 \text { incr. }}{360^{\circ}}=\frac{8192}{45}
\end{aligned}
$$

For more information and examples, see section 4.10.10 "Calculation aids".

Standardization assistant

Step	Action	Comment
1	Selection of unit for travel ('way')/ position.	see Figure 4.57 (incr/ $\mu \mathrm{m} / \mathrm{mm} / \mathrm{deg} / \mathrm{min})$
2	Enter the mechanical reference data of your application here.	Example: 360° corresponds to a load revolution on gear output side; transmission ratio i $=4$ Result: With reference 180° o for a relative positioning operation the gear on the output side is run half a revolution, on the motor side two revolutions.
3	Selection of a unit for velocity and acceleration.	see Figure 4.58
4	Click on the "Check and Apply" button to calculate the corresponding standardization values and enter them automatically on the Standardization tab.	Note: Changing the calculated standardization values subsequently will alter the reference to the selected unit.
(5)	If the application is an indexing table, and travel optimized positioning is required, choose "Indexing table application".	Enter the number of travel ('way') units for one revolution of the indexing table.

Table $4.29 \quad$ Standardization assistant

Figure 4.57 Standardization assistant, positioning (1)

Figure 4.58 Standardization assistant, positioning (2)

Figure 4.59 Standardization assistant, indexing table setup

LUST

Basic settings...

Speeds

Speeds tab

Positioning, free programmable, controlled via terminal $\quad \mathrm{X}$
Standardization Speeds \mid Acceleration profile \mid Homing mode \mid Limit switch \mid

Maximum process speed

Manual mode

Quick jog	$\mathrm{U} / \mathrm{min}$
Slow jog	$\mathrm{U} / \mathrm{min}$

Rotating direction of positioning control

Figure $4.60 \quad$ Speeds tab
Here you specify the maximum positioning velocity and the velocities of jog mode (manual mode) as well as the direction of rotation of the positioning control.

LUST

DM	Meaning	Value range	Unit	Parameter
Maximum process speed	The positioning control is limited to this value. Asynchronous machines can be operated up to rated speed (no field weakening range). Value is limited by speed controller - see Limitations tab)	$1-2147483647$	Customer unit defined on Standardization tab	704_POVMX (_PBAS)
Quick jog	Velocity of quick jog (via digital input or in Manual menu). Quick jog is activated by additionally actuating the second jog input while in slow jog mode.	$1-2147483647$	Customer unit defined on Standardization tab	715_POEGW (_PBAS)
Slow jog	Velocity of slow jog (via digital input or in Manual menu).	$1-2147483647$	Customer unit defined on Standardization tab	716_POSGW (_PBAS)
Direction of rotation (preceding sign) of positioning control	NEG (0) POS (1)	I21_POSIG		
(_PSTD)				

Table $4.30 \quad$ Velocities - basic settings

Basic settings...

Acceleration profile
Note: \quad Referred to the motor means positive direction of rotation clockwise, looking onto the motor shaft (A-side bearing plate).

Acceleration Profile tab

Figure 4.61 Acceleration Profile tab

In this screen the maximum accelerations and the acceleration mode are specified.

DM	Meaning	Value range	Unit	Parameter
Acceleration modes in positive direction, negative direction	Choose between linear and sinusoidal ramps. The sinusoidal ramps are created by limiting the change over time of the acceleration, the jerk. In sinusoidal acceleration the target position is reached later by the amount of the smoothing time.	$\begin{aligned} & \hline \operatorname{LIN}(0) \\ & \operatorname{SIN}(1) \end{aligned}$	/	$\begin{gathered} \text { 705_POBEP } \\ 706 \text {-POBEN } \\ \text { (_PRAM) } \end{gathered}$
Options Acceleration mode	Smoothing time of sinusoidal ramp	0-2000	ms	$\begin{aligned} & \text { 560_JTIME } \\ & \text { (SRAM) } \end{aligned}$
Maximum startup acceleration rate Linear + , Linear -	Linear+ determines the maximum permissible acceleration on startup in positive direction, linear- in negative direction.	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	Customer unit defined on Standardization tab	$\begin{gathered} \text { 707_POLAP } \\ \text { 708_POLAN } \\ \text { (_PRAM) } \end{gathered}$
Maximum braking acceleration rate Linear +, Linear -	Linear+ determines the maximum permissible acceleration on braking in positive direction, linear-in negative direction.	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	Customer unit defined on Standardization tab	$\begin{gathered} \text { 709_POBLP } \\ \text { 710_POBLN } \\ \text { (_PRAM) } \end{gathered}$

Table 4.31 Acceleration profile - basic settings
Homing mode

Basic seltings...
Homing mode

Figure 4.62 Homing Mode tab

EN

LUST

In this screen the background conditions for homing are set.

DM	Meaning	Value range	Unit	Parameter
Reference cam polarity	Defines whether the reference cam operates as a normally closed or normally open contact	Positive = normally open Negative = normally closed	1	$\begin{gathered} \text { 723_PORPO } \\ \text { (_PRR) } \end{gathered}$
Reference velocities	Defines the positioning velocities during homing.	0-2147483647	Customer unit defined on Standardization tab	$\begin{gathered} \text { 724_POVR1 } \\ 725 \text {-POVR2 } \\ 726 \text {-POVR3 } \\ \text { (PRR) } \end{gathered}$
Homing mode type	Defines the positioning curve during homing.	0-9	1	$\begin{gathered} \text { 722_PORTY } \\ \text { (PRRR) } \end{gathered}$
Zero correction	Offset value for actual position after homing. Shift of machine zero relative to reference point.	$\begin{array}{\|l} \hline \pm \\ 2147483647 \end{array}$	Customer unit defined on Standardization tab	$\begin{gathered} \text { 717_PONKR } \\ \text { (PRR) } \end{gathered}$
Zero search	The homing run can only be made to the reference cam, even ignoring the zero pulse of the encoder.	$\begin{aligned} & \text { OFF (0) } \\ & \text { ON (1) } \end{aligned}$	1	$\begin{gathered} 792 \text { POZZP } \\ \text { (_PRR) } \end{gathered}$

Table 4.32 Homing mode - basic settings

The object of the homing mode is to establish an absolute position reference (referred to the entire axle), and it must usually be executed once after power-up, because normal encoders (except multi-turn) only register the position within one revolution.

Device firmware versions V1.x support only homing mode with a reference cam connected to digital input ISD04. This means a reference cam must also be connected in conjunction with direct drives or in indexing table applications.

As from device firmware V2.35 the following variants are additionally supported:

Multi-turn encoder

For absolute encoders, homing mode type 9 should be set.
At controller start-up the encoder position and the zero point correction is taken as the actual position.

No further homing run is required!
The setting is only transferred after power-off!

Setting:

717 PONKR zero point correction
722 PORTY homing mode type 9
!
Further information on the G7 encoder siehe Kapitel 5.5.3

Virtual reference cam

If a homing run is started with no digital input to the reference cam configured, after 5 seconds the rising edge of a virtual cam, and after a further 5 seconds its falling edge is simulated, thereby automatically searching for the encoder zero. The time for simulation of the cam can be set by means of the variable POVAR Index 99 (corresponds to the variable H 99 in the iMotion program) in a range of $0-5000 \mathrm{~ms}$.

Example: Homing mode type 2

Figure $4.63 \quad$ Homing mode type 2: The reference cam is between the two hardware limit switches; the first zero pulse after exiting the cam in positive direction is evaluated see Table 4.33

Example: Homing mode type 4

Figure $4.64 \quad$ Homing mode type 4: The reference cam is between the two hardware limit switches; the first zero pulse after reaching the cam in negative direction is evaluated see Table 4.33

Example: Homing mode type 6

Figure 4.65 Homing mode type 6: The reference cam is flush to the positive hardware limit switch; the first zero pulse after reaching the cam in positive direction is evaluated see Table 4.33

Example: Homing mode type 8

Figure $4.66 \quad$ Homing mode type 8: The reference cam is flush to the positive hardware limit switch; the first zero pulse after exiting the cam in negative direction is evaluated see Table 4.33

Key to "Homing mode type" diagram:

Possible starting positions:
(1) Between reference cam and positive limit switch
(2) On reference cam
(3) Between reference cam and negative limit switch

Abbreviations used:
End - \quad Negative hardware limit switch
End $+\quad$ Positive hardware limit switch
RNok Reference cam
ZP Zero pulse of encoder
VRef 1 First (highest) ref.velocity
VRef 2 Second (middle) ref.velocity
VRef $3 \quad$ Third (lowest) ref.velocity
MP Machine zero

Note: For more information on the zero pulse of the respective encoders, see section 5.9.1.

Homing mode type

Select the homing mode type matching your layout:

Type 0:	No homing run is carried out. Instead, the current position is read-in and set equal to the zero correction (also via command SET 0). For multi-turn encoders, use type 9	
Type 1:	Reference cam: Zero pulse:	between the two limit switches; evaluation of first ZP after exiting cam in negative direction
Type 2:	Reference cam: Zero pulse:	between the two limit switches; evaluation of first ZP after exiting cam in positive direction
Type 3:	Reference cam: Zero pulse:	between the two limit switches; evaluation of first ZP after reaching cam in positive direction
Type 4:	Reference cam: Zero pulse:	between the two limit switches; evaluation of first ZP after reaching cam in negative direction
Type 5:	Reference cam: Zero pulse:	flush to negative limit switch; evaluation of first ZP after reaching cam in negative direction
Type 6:	Reference cam: Zero pulse:	flush to positive limit switch; evaluation of first ZP after reaching cam in positive direction
Type 7:	Reference cam: Zero pulse:	flush to negative limit switch; evaluation of first ZP after exiting cam in positive direction
Type 8:	Reference cam: Zero pulse:	flush to positive limit switch; evaluation of first ZP after exiting cam in negative direction
Type 9	Applies only to absolute encoders. No homing run is carried out. Instead of this, at start-up the current position is read and offset with the zero point correction.	

Table $4.33 \quad H o m i n g ~ m o d e ~ t y p e s ~$

Zero search

The homing run can only be made to the reference cam, even ignoring the zero pulse of the encoder (for this, clear the "With zero search" checkbox).

Note: During the homing run the software limit switches are not monitored. If a hardware limit switch is tripped, the direction is reversed.

Note: "Homing mode completed" output On encoders with zero pulse (G1/resolvers) the signal is set when the zero pulse is reached.

Time response of homing mode

PORV1 = Speed 1 in homing mode
PORV2 $=$ Speed 2 in homing mode
PORV3 $=$ Speed 3 in homing mode
Figure 4.67 Signal characteristics in homing mode
For the homing run:

1. the power stage must be enabled (ENPO input),
2. the control must be started (axles now holds its position under position control),
3. homing mode must be started by a 24 V level at the "Go" input.

The homing speeds V1 to V3 can be chosen at will.

Limit switch tab

Basic settings...

Limit switch

Figure $4.68 \quad$ Limit switch tab

DM	Meaning	Value range	Unit	Parameter
Software limit switches Positive	Software limit switch in positive axte direction	± 2147483648	Customer unit defined on the Standardization tab	718 _POSWP (PBAS)
Software limit switches Negative	Software limit switch in negative axle direction	± 2147483648	Customer unit defined on the Standardization tab	719 PPOSWN (PBAS)
Braking ramp	Braking ramp in effect when the software limit switch is active	$0-65535$	$\mathrm{rpm} / \mathrm{s}$	496 _STOPR (SRAM)

Table 4.34 Limit switch - basic settings
With the software limit switches the travel range can be limited (referred to the machine zero; see Homing Mode tab). Their parameters should be set before those of the hardware limit switches - that is: first the respective software limit switch, then the hardware switch, and then the mechanical end stop. If the target position resulting from a positioning command is outside these limits, the positioning operation is not carried out and an error message is transmitted. When a software limit switch is reached, braking is applied by the adjustable braking ramp and an error message is sent. If both parameters are set $=0$, no monitoring is carried out. During the homing run the software limit switches are not monitored.

LUST

4 Preset solutions

Basic settings...

Program selection

Program Selection tab

Positioning, free programmable, controlled via terminal
Acceleration profile \mid Homing mode \mid Limit switch Program selection |Flag | \mid
$\begin{array}{ll}\text { Coding } & \text { Fix(O)= Fixed moio } \\ \text { Program number } & \boxed{0}\end{array}$

Figure $4.69 \quad$ Program Selection tab
In this screen the coding of the program selection is specified.

DM	Meaning	Value range	Unit	Parameter
Coding	Definition of how the sequence program is selected.	see table 4.36	1	735_POPKD (_PBAS)
Program number	With coding $=$ FIX (0) active program	see table 4.36	1	734_POQPN (_PBAS)

Table 4.35 Program selection - basic settings

Coding

Bus	Setting	Function	Inputs max.	Programs
0	FIX	Fixed program number	$/$	$0 \ldots 99$
1	NOCOD	One input per program	8	$0 \ldots 7$
2	BIN	Binary coded	$7^{1)}$	$0 \ldots 99$
3	BCD	BCD coded	$8^{1)}$	$0 \ldots 99$

${ }^{1)}$ The error "Selected program not available (E-POS216)" occurs if no valid BCD combination is applied.
Table 4.36 Program selection coding

Note: The user can choose which of the stored programs to start. The selection is made in automatic mode. Following selection, the program is launched with a High edge at the start input.
Factory setting: Always start program P00.

Flag tab

Basic settings... Factory seting: Always start program Po.

Figure 4.70
Flag tab

Here the event controlled flags are set which can be polled in the sequence program (positioning, free programmable).

DM	Meaning	Value range	Unit	Parameter
M75	Function selector flag M75	see Table 4.38	-	775 _FSM75 (PPAR)
M76	Function selector flag M76	see Table 4.38	-	776 _FSM76 (PPAR)
M77	Function selector flag M77	see Table 4.38	-	777 _FSM77 (PPAR)
M78	Function selector flag M78	see Table 4.38	-	778_FSM78 (PPAR)
M79	Function selector flag M79	see Table 4.38	-	779_FSM79 (_PPAR)

Table 4.37 Flag - basic settings

LUST

Flags M75 to M79 can be assigned various items of information:

Bus	Parameter	Function
0	OFF	Freely usable
1	ACTIVE	Control in function
2	REFOK	Homing mode completed
3	ROT_R	Clockwise rotation
4	ROT_L	Anti-clockwise rotation
5	ROT_0	Standstill
6	REF	Reference reached
7	PABRE	Positioning absolute $=0 /$ relative $=1$
8	PMODE	Positioning pos.mode $=0 /$ velocity mode $=1$
9	LIMIT	Reference limitation initiated
10	SCAVM	Speed threshold reached
11	TCAVM	Torque threshold reached
12	WARN	Warning
13	ERR	Error
14	ERRW	Warning or error
15	EFLW	Tracking error
16	STOP	Quick stop
17	UV	Undervoltage in DC link
18	PSTP	Positioning stopped (collective message from WARN, ERR, EFLW, STOP, UV)
19	OSOO	Digital output OS00 (standard)
20	OSO1	Digital output OS01 (standard)
21	OSO2	Digital output OS02 (standard)
22	OSO3	Digital output OS03 (standard)
23	OVO	Digital output OVO (virtual)
24	OV1	Digital output OV1 (virtual)
25	OEOO	Digital output OS00 (expanded)
26	OEO1	Digital output OSOO (expanded)
27	0 E 02	Digital output OSOO (expanded)
28	OE03	Digital output OSOO (expanded)
29	ACCP	Profile generator in acceleration phase
30	VMAX	Reference generator has reached maximum speed.
31	MOGEN	Motor motorized/regenerative
32	WI2TD	Warning threshold $\mathrm{x} \times \mathrm{x}$ T device exceeded (parameter 339_WLITD)
33	WI2TM	Warning threshold I x I x T motor exceeded (parameter 338_WLITM)

Table 4.38 Flags event table

Note: For more information on the various functions of the flags, see section 5.2.1 "Digital outputs".

4.10.3 Special functions of the preset solution

Positioning data

1. Positioning data

The process data can be displayed with the "Process data" button.

\% Monitor and control positioning data $\quad-\|\square\| x \mid$											
File Options											
	Variables	\triangle		Flag	-		Counter	4		Index of positions	\triangle
H00	0		M00	0		C00	0		T00	0	
H01	0		M01	0		C01	0		T01	0	
H02	0		M02	0		C02	0		T02	0	
H03	0		M03	0		C03	0		T03	0	
H04	900		M04	0		C04	0		T04	0	
H05	0		M05	0		C05	0		T05	0	
H06	0		M06	0		C06	0		T06	0	
H07	0		M07	0		C07	0		T07	0	
H08	0		M08	0		C08	0		T08	0	
H09	0	-	M09	0	-	C09	0	-	T09	0	-
4	λ		1	\geqslant		1	+		1	λ	
Online mode									ic up	date	

Figure $4.71 \quad$ Positioning data
The positioning data include:

- 100 variables

H00 .. H99
M00 .. M99
C00 .. C99
T00 .. T15

- 100 flags
- 100 numerators
- 16 table positions
integer: $\pm 2.147 .483 .647$

0 or 1
integer 0-65535
integer: $\pm 2.147 .483 .647$

- Variables

Under Variables position, velocity, numerator and timer values can be stored which are used in the sequence program. The use of variables is particularly beneficial where the value is used multiply.

- Flags

Flags retain their value (0 or 1) until they are overwritten with a new one. As a result, flags set in one program can be scanned by another one (or a subroutine).

Note: Positioning data also retain their value following a power-off, provided they were saved beforehand in the Flash-Eprom with a command (SET Para [150] $=1$ or SAVE) or with the "Save device setting" button. The save operation takes about 6 seconds, and must not be interrupted (such as by a poweroff), otherwise the entire device setup will be inconsistent and the device will not work.

Note: After power-up all flags are set to 0 . Flags are set in the program by means of set commands (Set Mxx = 1); they are scanned by step commands or subroutine calls.

- Numerator

Numerators are 16-bit "variables" which can be incremented and decremented in the program sequence.

- Table positions

The positioning controller can store a table with 31 position values. The table positions can store values for positions and positioning travel distances.

In the sequence program you can choose the "GOT..." commands to position to table values. For this, a maximum of 5 inputs are programmed with the "Table index" function. The table index determines which line in the table ($1 \ldots 31$) is used for positioning. The position values can be set in the program (SET_command) or entered using the Process data Editor.

Note: After power-up, all table positions are set to the values stored in the Flash-Eprom. (Data must be saved!).

The Program Editor is launched with the "Process program" button.

Verfahirprogramm.

2. Process program / Program editor

Clicking the button in the main window opens up the following edit screen:

Figure 4.72 Program Editor

DM	Meaning	Value range	Unit	Parameter
Define start condition	Define start condition for sequence program	see Table 4.40		771_POSCT (_PPRG)
Abort condition in case of error	Define whether the sequence program is stopped in the event of an error	OFF (0)/ ON (1)		773_POERR (_PPRG)

Table 4.39 Start conditions - basic setting
Clicking the Edit button opens the Program Editor.

The Program Editor is used to create and edit sequence programs. With regard to creating sequence programs also refer to section 4.11.9 Program examples.

5 different conditions for starting the sequence program can be defined:

Setting	Start sequence program
STD (0)	Via two digital inputs. With a positive edge at input "GO (28) = Start homing mode/sequence" the sequence program is started, provided input "AUTO (29) = Automatic mode" has first been set. If "Automatic mode" is not selected, homing mode is started with the "GO" input. If the drive is controlled over a field bus, the "GO" and "AUTO" control bits need to be set accordingly over the bus.
TERM(1)	Via one digital input. With a positive edge at input "AUTO (29) = Automatic mode" the sequence program is started directly. Input "GO (28) = Start homing mode/sequence" is not used in this setting. A required homing run must be called up from the sequence program.
PARA (2)	Via parameter. "772-POSTC-Start sequence control/homing mode on startup with parameter". Parameter "772-POSTC" has the following settings. OFF (0) = Sequence program OFF STAPR (1) = Starting sequence program STAHO (2) = Starting homing
AUTO (3)	Automatically on device startup. After power-on the sequence program is started. No other inputs to activate the sequence program are necessary. Under the "AUTO" start condition it should be noted that when sequence control is active no program can be loaded into the servocontroller. So if the program is being modified, a different start condition should be selected by way of the parameter setting.
CTRL (4)	With start of control. Attention: If control is stopped because of a device error, the sequence program is also stopped. When control is restarted the sequence program is also restarted. In addition to the start conditions, by the "error response" setting in parameter 773_POERR the system can be configured so that the sequence program is terminated in the event of an error.

Table 4.40 Start conditions
The „jog" function is permitted only in the start condition STD (0).

Functions of the Program Editor

- Administer programs (create, open, save to file and transfer to servocontroller)
- Search and replace, copy and paste based on the Windows ${ }^{\text {TM }}$ standard
- Syntax check (Check! menu) and compiler
- The command set is described in section 4.10.8.
- \quad The program structure is described in section 4.10.9.
- For examples of process programs, see section 4.10.10.

Note:

- During transfer to the servocontroller (File_Save_To servo menu) the servocontroller must not be in "Automatic" mode.
- The editor is not case-sensitive.
- Set blanks between the set number, command and operand (not tabulators).
- Comments are backed up only on saving to hard disk or floppy. They are not transferred into the axle, so as to save memory capacity in the position controller.

Delete program

A sequence program in the servocontroller is deleted by overwriting it with a new one with the same number.

Delete program in field bus operation.
In operation over a field bus, the old program must be deleted first:
\%CL Pyy yy = program number $0 . .99$

Note: \quad For more information refer to the manual for the relevant field bus system.

LUST

Manual mode is launched with the "Manual" button.

Manual mode

3. Manual mode / Jog mode

- Jog mode

2"Manual mode, positioning and sequence control

| Manual mode \mid Position \mid Homing mode \| Direct order input | |
| :--- | :--- | :--- |

Figure 4.73 Manual mode

Note: Positioning and sequence control manual mode works in the following preset solutions:

- Positioning, reference and control via field bus (PCB_2)
- Positioning, fixed positions (PCT_3/PCB_3)
- Positioning, free programmable (PCT_4/PCB_4)

By pressing the "Jog+" and "Jog-" buttons the axle can be moved at the programmed jog speed (slow, quick) or at a freely selectable speed.

- Positioning

Speed of inching and positioning
Speed of inching and positioning
C Slow jog
C Slow jog
C Quick iog,
C Quick iog,
C Change speed
C Change speed
U0 U/min
U0 U/min
Exit
Help

Figure 4.74 Position tab
Here a position (absolute or relative) can be set which is approached automatically at the programmed jog speed when you choose the "Start" button. The "Stop" button stops an ongoing movement.

- Homing mode

Figure 4.75 Homing Mode tab
Choose the "Start" button to request a homing run. This homing run can be stopped by choosing the "Stop" button or by deactivating the power stage enable ENPO. The homing run conditions (type, velocity, etc.) must be set on the "Homing mode" tab (Basic settings) beforehand.

- Direct order input

Figure 4.76 Direct Order Input tab
Here a command can be entered directly for execution when the "Set" button is clicked.

For more information on the commands, see section 4.10.7 "Command set".

4.10.4 Terminal assignment

Figure 4.77 Terminal assignment for positioning, free programmable, control via terminal

Note: The following description applies where the sequence control start condition is set to STD (0) - see section 4.10.3.

4.10.5 Activation

With High level at the "ENPO" and "START control" inputs (observe time delay $\geq 2 \mathrm{~ms}$!) the servocontroller switches to "Loop control active", i.e. the motor shaft is position controlled.

Figure 4.78 Timing of "START control" activation
With the High signal at the "AUTO" input, automatic mode is selected and with the "GO" input the selected program is launched (see "Program Selection" tab).

Manual mode/jog mode (setup mode) is selected by a low level at the "AUTO" input. If the high level is canceled during motion, the axle is immediately stopped and automatic mode is aborted. In the event of a program abort by deselection of Automatic, the program can no longer be resumed, but must be restarted.

In manual mode (Automatic = low level) a homing run is carried out if a low/high edge change occurs at the "GO" input.

The "GO" signal can be cancelled after 20 ms (start pulse).

Figure 4.79 Timing of "Go" activation
Note: This actuation applieswhere the sequence control start condition is set to STD (0) - see section 4.10.3. Where the start condition is CTRL (4) the sequence program starts automatically with the control (input: START control $=1$).

Note: For the preset solution PCB_2 the "EASYDrive PosMod" bus setup should be used.

	X2	Des.	Function
	20	OSD03	Not assigned
	19	GND03	Not assigned
	18	VCCO3	Not assigned
	17	OSD02	Not assigned
	16	OSD02	Not assigned
$-\otimes \text { REF }$	15	OSD01	Reference reached
$\text { - } \otimes \text { C_RDY }$	14	OSD00	Device ready
	13	DGND	Digital ground
RECAM	12	ISD04	Reference cam
	11	ISD03	Not assigned
	10	ISD02	Not assigned
	9	ISD01	Not assigned
	8	ISD00	Not assigned
- ENPO	7	ENPO	Hardware enable of power stage
	6	DGND	Digital ground
	5	U_{V}	Auxiliary voltage 24 V
	4	ISA01-	Not assigned
	3	ISA01+	Not assigned
	2	ISA00-	Not assigned
	1	ISA00+	Not assigned

Figure 4.80
Terminal assignment for positioning, free programmable, control via field bus

For more information refer to the user manual of the relevant field bus system.

4.10.7 Command set

Programming of the position controller is line-oriented and is similar to the BASIC programming language. This reduces the time spent learning the scope of commands. Another advantage is that the programs are also readable for users without detailed knowledge of the command set.

The command set is divided into the following categories:

- Step commands / subroutine calls
- Set commands
- Positioning commands
- Wait commands

The execution time for commands is generally 1 ms . Exceptions are specified.

Command set overview

Com-
 mand
 Operand $1 \quad$ Operand 2
 Comments

Step commands / Subroutine calls

JMP Ny/END/Pyy

(P < > x, Hxx)	Ny/END/Pyy ${ }^{1)}$	Actual position
($\mathrm{SP}<=>\mathrm{x}, \mathrm{Hxx}$)	Ny/END/Pyy ${ }^{1)}$	Reference position
($\mathrm{PW}=0 / 1$)	Ny/END/Pyy ${ }^{1)}$	Actual position in position window (PW=1)
(ST $=0 / 1$)	Ny/END/Pyy	$\begin{aligned} & \text { Reference position = target position } \\ & (\mathrm{ST}=1) 3 \end{aligned}$
(lppi $=0 / 1$)	Ny/END/Pyy	Status of input
($\mathrm{Mxx}=0 / 1$)	Ny/END/Pyy	Status of flag
(M[Cxx] $=0 / 1$)	Ny/END/Pyy	Status of flag (indexed)
($\mathrm{Cxx}<=>\mathrm{d}$)	Ny/END/Pyy	Numerator status
(Hxx < = > z, Hyy)	Ny/END/Pyy	Quantity of variable
(H[Cxx] < = > z, Hyy)	Ny/END/Pyy	Quantity of variable (indexed)
($\mathrm{Zxx}<\gg \mathrm{d},=0$)	Ny/END/Pyy	Timer status
(PARA[n$]<=>\mathrm{z}$)	Ny/END/Pyy	Quantity of a parameter
(TPx $=0 / 1$)	Ny/END/Pxx	Status of touchprobe
$\begin{aligned} & (\text { OVNORMSUM }=x / \\ & H x x) \end{aligned}$	OVNORMSUM	Read-in and compare mean value of both analog values. OVNORMSUM $=(0 V 1+$ OV2) / 2 . Only where the function selectors of both analog inputs are set to OVR1 and OVR2!

Set commands

SET Oppi $=0 / 1, M x x$
Oppi $=(A \mid \& B)$
$M x x=0 / 1, M y y,-M y y$
$M[C x x]=0 / 1$, Myy, - Myy
$M x x=(A \mid \& B)$
$H x x=z, H y y, H[C y y], C y y$, PARA[n],
FPARA[n, xx]
$H[C x x]=z, H y y, H[C y y], C y y, ~ P A R A[n]$,
FPARA[n, xx]
Hxx + - *: z, Hyy
H[Cxx] + - *: z, Hyy

1) Execution time $=2 \mathrm{~ms}$
2) Execution time dependent on parameters

Set output directly or with flag
Set output via logic link (A, B = Ippi or Mxx;
| = OR (ASCII 124) ; \& = AND)
Set flag; invert
Set flag (indexed); invert
Set flag via logic link ($A=$ lppi; $B=$ lppi or
Mxx; $\mid=O R(A S C \mid I 124) ; \&=A N D)$
Set variable

Set variable (indexed)
Calculate variable
Calculate variable (indexed)
indexed $=$ dependent on a numerator status

Table 4.41 Command set overview

Com- mand	Operand $1 \quad$ Operand 2	Comments
	$H x x=1 P, S P, O V$	Set variable
	$H[C x x]=I P, S P, O V$	Set variable (indexed)
	$H x x=T x x$	Set variable with table position
	$H[C x x]=T x x$	Set variable with table position (indexed)
	$H x x=T P x$	Set variable with touchprobe (trigger position)
	$H[C x x]=T P x$	Set variable with touchprobe (trigger position) (indexed)
	Cxx = d, Hyy, Cyy	Set numerator
	Cxx + - b, Hyy	Increment/decrement numerator
	Cxx $=1 \mathrm{lpp}$	Set numerator with input port
	Txx $=x, H x x, 1 P, S P$	Set table position
	Zxx $=\mathrm{d}$, Hxx	Set timer
	OV $=0 / 1$	Set override ($0 \mathrm{~V}=1$: activate)
	0	Adopt current position as reference point
	K15, K16 = 0/1, Hxx	Set acceleration mode ($0=l$ linear, $1=\sin ^{2}$) (K15 = positive, K16= negative direction)
	K17.... 224 = p, Hxx	Set maximum acceleration value ($p=1 . . .100 \%$),
	$\operatorname{PARA}[n]^{2)}=\mathrm{z}, \mathrm{Hyy}, \mathrm{H}[\mathrm{Cyy}]$	Set parameter (indexed)
	FPARA $[n, x x]^{2)}=z, \mathrm{Hyy}, \mathrm{H}[\mathrm{Cyy}]$	Set field parameter (indexed)
	TPx = G1F0, G1F1	Activate touchprobe ($\mathrm{G} 1=$ position encoder (fixed)), (FO = positive edge), (F1 = negative edge, TPx=TP3, TP4
	Hxx/H[Cxx] = EGEARSPEED	Read-out master encoder velocity in unit incr/ms
	Hxx/H[Cxx] = EGEARINC	Read-out master encoder increments
	EAGERINC $=x / H x / / H[C x x]$	Set master encoder increments
	$\mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}]=\mathrm{IN} / \mathrm{SN}$	Read-out actual or reference speeds in rpm
	$H x x / H[C x x]=$ FPARA[Hxx/x, Hxx/y] or gen.	Read field parameters
	FPARA[x/Hxx/H[Cxx], y/Hxx/Hxx[Cxx]] $=z / H x x / H[C x x]$	Write gen. field parameters

1) Execution time $=2 \mathrm{~ms} \quad$ indexed $=$ dependent on a numerator status
2) Execution time dependent on parameters

Table 4.41 Command set overview

Command	Operand 1	Operand 2	Comments
$\mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}]=0 \mathrm{~V} 1$			Adopts A/D-converted value of analog input ISAO into variable. Value range -10 to +10 V $=-2047$ to +2047 . Only with function selector setting OVR1 for analog input ISAO
$\mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}]=0 \mathrm{~V} 2$			Adopts A/D-converted value of analog input ISA1 into variable. Value range 0 to $+10 \mathrm{~V}=$ 0 to +1023 . Only with function selector setting OVR2 for analog input ISA1
$\mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}]=$ OVNORMSUM			Read-in mean value of both analog values OVNORMSUM $=(0 V 1+O V 2) / 2-$ Only where the function selectors of both analog inputs are set to OVR1 and OVR2!
Positioning commands			
GO	Ax, A Hxx	Vy, Hyy	Absolute position, velocity (with resumption)
	Rx, R Hxx	Vy, Hyy	Relative travel, velocity (with resum.)
GOTA	Vy, Hyy		Position from table, velocity (with resum.)
GOTR	Vy, Hyy		Travel from table, velocity (with resum.)
GOW	Ax, A Hxx	Vy, Hyy ${ }^{1)}$	Absolute position, velocity (without resum.)
	Rx, R Hxx	Vy, Hyy ${ }^{1)}$	Relative travel, velocity (without resum.)
GOTWA	Vy, Hyy ${ }^{1)}$		Position from table, velocity (without resum.)
GOTWR	Vy, Hyy ${ }^{1)}$		Travel from table, velocity (without resum.)
GO	0		Carry out homing run (programmed type)
GO	$V+-y$		Infinite moving (direct)
	V Hxx		Infinite moving (via variable)
GOSYN	0/1		Activate electronic gearing (1) or deactivate (0)
GORT	x, Hxx	Vy, Hyy	Indexing table: Position, velocity (travel optimized, with continuation)
GOWRT	x, Hxx	Vy, Hyy ${ }^{1)}$	Indexing table: Position, velocity (travel optimized, without continuation)
1) Execu	tion time $=2 \mathrm{~ms}$		indexed = dependent on a numerator status

Table 4.41 Command set overview

Command	Operand 1	Operand 2	Comments
GOTRT	Vy, Hyy		Indexing table: Position from table, velocity (travel optimized, with continuation)
$\begin{aligned} & \text { GOWTR } \\ & \mathrm{T} \end{aligned}$	Vy, Hyy ${ }^{\text {1) }}$		Indexing table: Position from table, velocity (travel optimized, without continuation)
$\begin{aligned} & \text { GORD } \\ & \mathrm{TP}_{3}- \\ & \mathrm{TP}_{4} \end{aligned}$	x,Hxx	Vy, Hyy	Compare variation in difference between TP_{3} and TP_{4} for input
$\begin{aligned} & \mathrm{GOWR} \\ & \mathrm{D} \mathrm{TP}_{3}- \\ & \mathrm{TP}_{4} \end{aligned}$	x,Hxx	Vy,Hyy	Compare variation in difference between TP_{3} and TP_{4} for input (not continued)
$\begin{aligned} & \text { GOATP } \\ & \mathrm{x} \end{aligned}$	x,Hxx	Vy,Hyy	Trigger position (Touchprobe) velocity
$\begin{aligned} & \text { GOWA } \\ & \text { TPx } \end{aligned}$	x,Hxx	Vy,Hyy	Trigger position (Touchprobe) velocity
STOP	B		Brake with prog. acceleration and parameterized smoothing
	M		Brake with max. acceleration always without smoothing, even when configured
	0		As STOP M, additionally control shut-off
Wait commands and saving			
WAIT	b, Hxx		Waiting time in ms (1...65535)
	PW		Wait until actual position is in position window
	ST		Wait until reference position = target position
	(lppi $=0 / 1$)		Wait until input = 0/1
	TPx		Wait until trigger position (Touchprobe) has been saved (triggered)
SAVE			Back up device setup from RAM to FlashEPROM Execution time approx. 6 s

1) Execution time $=2 \mathrm{~ms}$
indexed $=$ dependent on a numerator status
2) Execution time dependent on parameters

Table 4.41 Command set overview

Key

Parameter	Meaning	Value range	Resolution
Cxx Hxx, Hyy Kxx Mxx, Myy Ny PARA[n] FPARA [$n, x x]$ Pmm Pyy Txx Zxx	Numerator index Variables index Machine parameters Flag index Set number Parameter number n Field parameter number n / field parameter index xx Mask (hexadecimal) Program number Table position Timer index Holding value		(8 bits)
TPx	Touchprobe (trigger position)	3,4	
艮 $\begin{aligned} & \text { b } \\ & \text { d } \\ & \text { d } \\ & \\ & \\ & x, y, z\end{aligned}$	Value of a flag Value (auxiliary variable for loading/calculating) Status of a numerator Status of a timer Numerical value (position, velocity, variables or table position)	$\begin{aligned} & 0 / 1 \\ & 1 \ldots 65535 \\ & 0 . . .65535 \\ & 0 . .4 .294 .967 .295 \\ & {[\mathrm{~ms}]} \\ & -2.147 .483 .648 \\ & \ldots .+2.147 .483 .647 \end{aligned}$	(16 bits) (16 bits) (32 bits) (32 bits, with preceding sign)

Table 4.42 Key to Table 4.41

LUST

Subroutines

Unconditional step commands/ subroutine calls

Conditional step commands/ subroutine calls

1. Step commands and subroutine calls (JMP)

- Unconditional step commands/subroutine calls are always executed (unconditionally).
- Conditional step commands/subroutine calls are only executed when the specified condition is met. The condition for execution of the command is given in brackets (...).
- The step destination is given as a set number, the end of the program, or a program number:

Jump to set with number $\mathrm{y}=0 \ldots 999$
Jump to end of program
Call program/subroutine with number $y y=00 . . .99$

JMP (...) Ny
JMP (...) END
JMP (...) Pyy

A subroutine (UP) is handled in the same way as a standalone program. The total number of programs and subroutines is 100 (P00 ... P99).

When the subroutine has been run through the program is resumed with the set which follows the call. The maximum nesting depth for subroutines is 10 . If this number is exceeded, an error message is delivered and the current program is aborted.

These commands are not linked to any preconditions (axle position, status of internal program variables) and consequently are executed immediately and unconditionally.

JMP Ny	Jump to set with number y
JMP END	Jump to end of program
JMP Pyy	Call subroutine with number yy

Conditional step commands/subroutine calls are linked to a specific condition, given in brackets. If the condition is met, the step is executed to the specified set number, to the end of the program, or to the subroutine as appropriate. If the condition is not met, the program is resumed with the following set.

Note: \quad The execution of a conditional step can be linked to one of the following conditions.

Actual position
Exceed:
Direct: JMP (IP>x) Ny/END/Pyy
Via variable: JMP (IP>Hxx) Ny/END/Pyy
Undershoot:
Direct: JMP (IP<x) Ny/END/Pyy
Via variable: JMP (IP<Hxx) Ny/END/Pyy
$x \quad=\quad$ Comparative position [travel unit]
Hxx = Variables index (00 ... 99)
Ny = Set number (000 .. 999)
Execution time: 1 ms

Reference position
Reach:
Direct: $\quad J M P(S P=x) N y / E N D / P y y$
Via variable: JMP (SP=Hxx) Ny/END/Pyy
Exceed:
Direct: $\quad J M P(S P>x) N y / E N D / P y y$
Via variable: JMP (SP>Hxx) Ny/END/Pyy
Undershoot:
Direct: $\quad J M P(S P<x) N y / E N D / P y y$
Via variable: JMP (SP<Hxx) Ny/END/Pyy
$x \quad=\quad$ Comparative position [travel unit]
$\mathrm{Hxx}=\quad$ Variables index (00 ... 99)
$\mathrm{Ny}=\quad$ Set number (000 ... 999)
Execution time: 1 ms
Axle status
PW reached: $\quad \mathrm{JMP}(P W=1) \mathrm{Ny} / E N D / P y y \quad$ Actual position in position window ${ }^{1)}$

PW not reached: JMP $(P W=0) \mathrm{Ny} / E N D / P y y$ Actual pos. not in position window

LUST

Quantity of a variable (direct comparison)

Quantity of a variable (comparison with second variable)

Mean value of both analog inputs

```
JMP(OVNORMSUM = x/Hxx) Ny/END/Pyy
```

Compare: JMP(OVNORMSUM $=x / H x x)$ Ny/END/Pyy

x	$=$ Comparison value	$(0 \ldots 2047)$
Hxx	$=$ Variables index	$(00 \ldots 99)$
Ny	$=$ Set number	$(000 \ldots 999)$
Pyy	$=$ Subroutine index	$(00 \ldots 99)$

OVNORMSUM forms the mean of both analog values OVNORMSUM = (OV1 + OV2) / 2, wherein OV1 and OV2 have the value range $0 \ldots$... 10V corresponds to 0 ... 2047.

Only where the function selectors of both analog inputs are set to FISA0 $=$ OVR1 and FISA1 = OVR2!

Compare:
Direct: JMP (Hxx = z) Ny/END/Pyy Indexed: $\quad \mathrm{JMP}(\mathrm{H}[\mathrm{Cxx}]=\mathrm{z}) \mathrm{Ny} / E N D / P y y$

Exceed:

Direct: JMP (Hxx >z) Ny/END/Pyy Indexed: JMP (H[Cxx] > z) Ny/END/Pyy

Undershoot:
Direct: $\quad J M P(H x x<z) N y / E N D / P y y$
Indexed: JMP (H[Cxx] < z) Ny/END/Pyy

z	$=$	Variable value
Cxx	$=$	$(\pm 2.147 .483 .647)$
Hxx	$=$ Vumerator index	$(00 \ldots 99)$
Ny	$=$ Set number	$(00 \ldots 99)$
		$(000 \ldots 99)$

Compare:
Direct: JMP (Hxx = Hyy) Ny/END/Pyy
Indexed: JMP (H[Cxx] = Hyy) Ny/END/Pyy

Exceed:
Direct: JMP (Hxx > Hyy) Ny/END/Pyy
Indexed: JMP (H[Cxx] > Hyy) Ny/END/Pyy

	Undershoot:		
	Direct: Indexed:	$\begin{aligned} & \text { JMP (Hxx < Hyy) Ny/END/Pyy } \\ & \text { JMP (H[Cxx] < Hyy) Ny/END/Pyy } \end{aligned}$	
	Cxx $=$ $\mathrm{Hxx}, \mathrm{Hyy}=$ Ny $=$	$=$ Numerator index = Variables index $=$ Set number	$\begin{aligned} & (00 \ldots 99) \\ & (00 \ldots 99) \\ & (000 \ldots 999) \end{aligned}$
Status of a timer	Compare: Exceed: Undershoot:	$\begin{aligned} & \text { JMP }(Z x x=0) N y / E N D / P y y \\ & \text { JMP }(Z x x>d) N y / E N D / P y y \\ & \text { JMP }(Z x x<d) N y / E N D / P y y \end{aligned}$	Timer expired? *)
	d $=$ Ny $=$ Zxx $=$	$=$ Comparative timer status $=$ Set number $=$ Timer index	$\begin{aligned} & (0 \ldots 65535) \\ & (000 \ldots 999) \\ & (00 \ldots 09) \end{aligned}$
	Note: $\begin{array}{ll}\text { It } \\ & \text { exp } \\ & \text { in }\end{array}$	It is only possible to scan for equal time when the timer has expired (i.e. " $=0$ "), as there is no guarantee that a specific interim state ("=d") is reached at the point of scanning.	
Quantity of a parameter	Compare:		
	Direct: Indexed:	JMP (PARA[n] = z) Ny/END/Pyy JMP (PARA[Cxx] = z) Ny/END/Pyy	
	Exceed:		
	Direct: Indexed:	JMP (PARA[n] > z) Ny/END/Pyy JMP (PARA[Cxx] > z) Ny/END/Pyy	
	Undershoot:		
	Direct: Indexed:	JMP (PARA[n] < z) Ny/END/Pyy JMP (PARA[Cxx] < z) Ny/END/Pyy	
	z =	$=$ Variable value	($\pm 2.147 .483 .647)$
	Cxx =	$=$ Numerator index	(00... 99)
	PARA[n] =	$=$ Parameter number	(000 ... 999)
	Ny =	$=$ Set number	(000 ... 999)

Note: | Parameters of data type FLOAT32 and STRING cannot be |
| :--- |
| used (see Appendix - Parameter overview). |
| For others, appropriate conversions are required. |

e.g. INT32Q16	- after reading divide by 65536
FIXPOINT16	- before writing multiply by 65536 multiply - standardization to 0.05 - write: multiply by 20

2. Set commands (SET)

Using the set commands, a wide variety of operations can be performed in the process programs:

- Setting of outputs (direct, via mask, via logic links, ...)
- Setting of flags (direct, indexed, via logic links, ...)
- Load, calculate variables ...
- Load, increment, decrement numerator
- Set and start timer
- Set table positions
- Activate and deactivate override
- Change acceleration parameters
$\begin{array}{ll}\text { Direct: } & \begin{array}{l}\text { SET Oppi }=0 \\ \text { SET Oppi }=1\end{array} \\ \text { Via flag: } & \text { SET Oppi }=\text { Myy }\end{array}$
via logic link:
OR: \quad SET Oppi $=($ Ippi I Iqqk) logic link between two inputs

> SET Oppi = (lppi I Myy) logic link between input and flag SET Oppi $=(\mathrm{Mxx}$ I Myy) logic link between two flags

AND: \quad SET Oppi $=($ lppi \& lqqk) logic link between two inputs SET Oppi $=($ lppi \& Myy) logic link between input and flag SET Oppi $=($ Mxx \& Myy $)$ logic link between two flags

Mxx, Myy	= Flag index	$(00 \ldots 99)$
Pmm	Screen for output	$(00 \ldots$ FF Hex)
Cxx	$=$ Numerator index	$(00 \ldots 99)$
Ippi, Iqqk	Inputs	(ISxx, IExx)
Oppi	Outputs	(OSxx, OExx)

The character "l" is the ASCII character number 124. It is produced by pressing <ALT> and simultaneously keying in "124" on the number pad.

Direct:	SET $M x x=0$
	SET $M x x=1$
Indexed:	SET $M[C x x]=0$
	SET $M[C x x]=1$

Via 2nd flag:
Direct: \quad SET Mxx = Myy SET Mxx = -Myy invert flag

Indexed: SET M[Cxx] = Myy
SET M[Cxx] = -Myy invert flag

Via logic link:
OR:
Direct: \quad SET $M x x=($ lppi | lqqk) logic link between two inputs SET Mxx = (lppi | Myy) logic link between input and flag
indexed: SET M[Cxx] = (lppi | Iqqk) logic link between two inputs SET M[Cxx] = (lppi | Myy) logic link between input and flag

AND:
Direct: SET Mxx = (lppi \& Iqqk) logic link between two inputs SET Mxx = (lppi \& Myy) logic link between input and flag
Indexed: SET M[Cxx] = (lppi \& lqqk) logic link between two inputs
SET M[Cxx] = (lppi \& Myy) logic link between input and flag

Cxx	$=$ Numerator index	$(00 \ldots 99)$
Mxx, Myy	$=$ Flag index	$(00 \ldots 99)$
Ippi, Iqqk	$=$ Inputs	(IE00 ... IE07 = connector X15)

The character "l" is the ASCII character number 124. It is produced by pressing <ALT> and simultaneously keying in "124" on the number pad.

Set variable

Direct: Indexed:	SET Hxx = z SET H[Cxx] = z
with 2nd variable:	
Direct:	SET Hxx = Hyy
Indexed:	SET H[Cxx] = Hyy
with 2nd indexed variable:	
Direct: Indexed:	$\begin{aligned} & \text { SET Hxx = H[Cyy] } \\ & \text { SET H[Cxx] = H[Cyy] } \end{aligned}$
with numerator status:	
Direct: Indexed:	$\begin{aligned} & \text { SET Hxx = Cyy } \\ & \text { SET H[Cxx] = Cyy } \end{aligned}$
with value of parameter:	
Direct: Indexed:	$\begin{aligned} & \text { SET Hxx = PARA[n] } \\ & \text { SET H[Cxx] = PARA[n] } \end{aligned}$
with value of field parameter:	
Direct: Indexed:	SET Hxx = FPARA[n, $x x]$ SET H[Cxx] = FPARA $[n, x x]$
Via calculation - direct: ${ }^{\text {2) }}$	
Addition	SET Hxx +z
Subtraction	SET Hxx -z
Multiplication	SET Hxx *z
Division	SET Hxx : $\quad \mathrm{z} \neq 0^{1)}$
via calculation - indexed: ${ }^{2)}$	
Addition	SET H[Cxx] +z
Subtraction	SET H[Cxx] -z
Multiplication	SET H[Cxx] ${ }^{\text {z }}$
Division	SET H[Cxx] :z z $\mathrm{z}^{\text {(}}{ }^{1)}$

Direct: SET Hxx = H[Cyy]
Indexed: SET H[Cxx] = H[Cyy]
with numerator status:
Direct: \quad SET Hxx = Cyy
Indexed: SET H[Cxx] = Cyy
with value of parameter:
Direct: SET Hxx = PARA[n] Indexed: SET H[Cxx] = PARA[n]
with value of field parameter:
Direct: \quad SET Hxx = FPARA[n, $x x]$
Indexed: SET H[Cxx] = FPARA[n, $x x]$

Via calculation - direct: ${ }^{2)}$
Addition SET Hxx +z
Subtraction SET Hxx -z
Multiplication SET Hxx *z
Division SET Hxx :z $z \neq 0^{1)}$
via calculation - indexed: ${ }^{2)}$
Addition SET H[Cxx] +z
Subtraction SET H[Cxx]-z

Division \quad SET H[Cxx] :z $z \neq 0^{1)}$

Set table position
Direct: \quad SET Cxx $=\mathrm{d}$
With variable: SET Cxx = Hyy
With numerator: SET Cxx = Cyy

Increment/decrement numerator:
SET Cxx + d
SET Cxx - d
Increment/decrement numerator via variable:
SET Cxx + Hyy
SET Cxx - Hyy

d	$=$ Numerator value	$(0 \ldots 65535)$
b	$=$ Auxiliary variable for add./subtr.	$(1 \ldots 65535)$
Cxx, Cyy	$=$ Numerator index	$(00 \ldots 99)$
Hyy	$=$ Variables index	$(00 \ldots 9)$

Direct: SET Txx = z
Indexed: \quad SET T[Cxx] = z
Direct:
With variable: SET Txx = Hyy
Actual position: SET Txx = IP
With ref.pos.: SET Txx = SP
indexed:
With variable: SET T[Cxx] = Hyy
With actual
position: \quad SET T[Cxx] = IP
With ref.pos.: SET T[Cxx] = SP

z	$=$ Value of table position	$(\pm 2.147 .483 .647)$
Cxx	$=$ Numerator index	$(00 \ldots 99)$
Hyy	$=$ Variables index	$(00 \ldots 99)$
Txx	$=$ Index of table position	$(00 \ldots 15)$

LUST

4 Preset solutions

Set and start timer

Activate or deactivate override

After loading a timer with a value the value is automatically decreased by one every millisecond until eventually the value 0 is reached.

Direct: \quad SET $Z x x=d$
With variable: SET Zxx = Hyy

d	$=$ Timer value	$(0 \ldots 4.294 .967 .295[\mathrm{~ms}])$
Hyy	$=$ Variables index	$(00 \ldots 99)$
Zxx	$=$ Timer index	$(00 \ldots 07)$

When override is active, in all positioning operations the programmed velocities are offset against the override passed by the servocontroller (0... 150\%).

When override is inactive, movement is always at the programmed velocity (corresponding to override $=100 \%$).

Activate: \quad SET OV $=1$
Deactivate: $\quad \mathrm{SET} O V=0$

Acceleration mode	Adopt a modified override value
linear	immediately during positioning
$\sin ^{2}$	on next positioning command

The acceleration mode (Acceleration Profile tab) can be changed at a standstill by means of the following set commands (execution time: 1 ms):

Acceleration mode for positive direction:

SET K15 = 0/1
With variable: SET K15 = Hxx

$$
\begin{aligned}
& \left(0=\text { linear; } 1=\sin ^{2}\right) \\
& (H x x=0 / 1)
\end{aligned}
$$

Acceleration mode for negative direction:

SET K16 $=0 / 1$	$\left(0=\right.$ linear; $\left.1=\sin ^{2}\right)$
With variable:	$(\mathrm{Hxx}=0 / 1)$

LUST

4 Preset solutions

Change of acceleration maximum values

Analog values

Command	Operand 1	Comments
SET	$\begin{aligned} & \mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}] \\ & =0 \mathrm{~V} 1 \end{aligned}$	Adopts A/D-converted value of analog input ISAO into variable. Value range -10 to $+10 \mathrm{~V}=-2047$ to +2047 . Only with function selector setting OVR1 for analog input ISAO
	$\begin{aligned} & \mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}] \\ & =0 \mathrm{~V} 2 \end{aligned}$	Adopts A/D-converted value of analog input ISA1 into variable. Value range 0 to $+10 \mathrm{~V}=0$ to +1023 . Only with function selector setting OVR2 for analog input ISA1
	$\begin{aligned} & \mathrm{Hxx} / \mathrm{H}[\mathrm{Cxx}] \\ & = \\ & \text { OVNORMSU } \\ & \mathrm{M} \end{aligned}$	Read-in sum of analog values. OVNORM-SUM $=(\mathrm{OV} 1+\mathrm{OV} 2) / 2$, wherein OV 1 and OV 2 have the value range $0 \ldots 10 \mathrm{~V}$ corresponds to 0 ...2047. Only where the function selectors of both analog inputs are set to FISA0 $=0$ VR1 and FISA1 $=$ OVR2!

Hxx = Variables index (0 ... 99)
Cxx = Numerator index (0 ... 99)

LUST

Positioning with or without program resumption

Positioning with resumption

3. Positioning commands (GO)

With these commands you can move the driven positioning axle. There are three basic methods of moving the axle:

- Absolute positioning: Move to a specific position (GO A ..)
- Relative positioning: Move a specific distance (GO R ...)
- Synchronism: Electronic gearing (GOSYN)
- with program resumption (GO ...)

If such a command is given in a program, when the axle starts up the program is immediately resumed with the following set. In this way several commands can be processed in parallel.

If the command is passed during an ongoing positioning operation, the axle moves at the changed speed to the new target position. The new command is immediately executed; that is, the position from the original command is no longer approached!

- without program resumption (GOW ...)

In these commands the following set is only processed when the actual position has reached the position window. As long as the axle is not in the position window - e.g. because of a tracking error - the program is not resumed.

The "W" is an abbreviation for "Wait", GOW = "Go and Wait".

Position or travel direct / velocity direct
Absolute: $\quad G O A x \vee y$
Relative: GO Rx Vy
Position or travel direct / velocity via variable
Absolute: GO Ax Hyy
Relative: GO Rx Hyy
Position or travel via variable / velocity direct
Absolute: GO A Hxx Vy
Relative: GO R Hxx Vy
Position or travel via variable / velocity via variable
Absolute: GO A Hxx Hyy
Relative: GO R Hxx Hyy

Position or travel via table / velocity direct
Absolute: GOTA Vy
Relative: GOTR Vy
Position or travel via table / velocity via variable
Absolute: GOTA Hyy
Relative: GOTR Hyy

Ax = Absolute position [travel unit]
Rx = Positioning travel [travel unit]
Hxx = Index of variables with position value
Hyy $\quad=$ Index of variables with velocity
Vy $\quad=$ Velocity value [velocity unit]

Position or travel direct / velocity direct
Absolute: GOW Ax Vy
Relative: $\quad G O W R x V y$

Position or travel direct / velocity via variable
Absolute: GOW Ax Hyy
Relative: GOW Rx Hyy

Position or travel via variable / velocity direct
Absolute: GOW A Hxx Vy
Relative: GOW R Hxx Vy

Position or travel via variable / velocity via variable
Absolute: GOW A Hxx Hyy
Relative: GOW R Hxx Hyy

Position or travel via table / velocity via variable
Absolute: GOTWA Hyy
Relative: GOTWR Hyy

After activation of synchronism by the GOSYN 1 command, the sequence program is immediately resumed with the next set.

Master encoder

Comma nd	Operand 1	Comments
SET	Hxx/H[Cxx] = EGEARSPEED	Read-out master encoder velocity in unit incr/ms. Regardless of whether engaged or disengaged
	Hxx/H[Cxx] = EGEARINC	Read-out master encoder increments (Incr.). Regardless of whether engaged or disengaged
	EGEARING = $x / h x x / H[C x x]$	Set master encoder increments. Regardless of whether engaged or disengaged

Hxx	$=$ Variables index $(0 \ldots 99)$
Cxx	$=$ Numerator index $(0 \ldots 99)$
x	$=$ Comparison value (± 2147483647)

Note: Synchronism is activated hard, without limiting the dynamic of the axle by ramps. Gentle coupling into a rotating master axle is not possible.

A GOR command (relative positioning) during synchronism results in an overlaid positioning.

(1) Master axle
(2) Slave axle

Figure 4.81 Relative positioning during synchronism. $t_{x}=$ time of command GO R1000 V200

A GOA command (absolute positioning) during synchronism aborts the synchronism, the axle keeps running at the current process speed and carries out the requested absolute positioning, observing the preset ramps.

(1) Master axle
(2) Slave axle

Figure 4.82 Absolute positioning during synchronism. $t_{x}=$ time of command GO A1000 V200
Owing to the syntax, a velocity (here: V200) must always be selected. It is ignored during positioning, however.

The master encoder, numerator and denominator parameters specify how many pulses are required for a motor revolution or to cover a certain distance (see "Master encoder/Encoder simulation" user screen).

Example:Synchronism in a printing machine
A CDD3000 as the master axle has an encoder simulation with 3072 increments and a mechanical gear with a transmission ratio of 15. A CDD3000 as the slave axle has a mechanical gear with a transmission ratio of 5 .

LUST

Travel optimized positioning of an indexing table

Positioning with resumption (travel optimized)

Figure 4.83 Example of a printing machine
The CDD3000 which drives the counterpressure cylinder works as the master. Its encoder simulation serves as the position reference for the CDD3000 which follows as the slave and drives the pressure cylinder. As a result, the movements of the counterpressure and pressure cylinders are synchronized.

The target position is specified in absolute terms and the positioning controller moves the axle in the direction in which the travel is shortest.

Note: \quad This mode of positioning requires the indexing table application to have been selected on the "Standardization" tab.

Position direct / velocity direct
GORT x Vy
Position direct / velocity via variable
GORT x Hyy
Position via variable / velocity direct
GORT Hxx Vy
Position via variable / velocity via variable
GORT Hxx Hyy
Position via table / velocity direct
GOTRT Vy
Position via table / velocity via variable
GOTRT Hyy

Positioning without resumption (travel optimized)

Note: Standard positioning commands such as GO A Hxx Hyy can still be used. They do not operate in the absolute position system of the indexing table, however - no travel optimized response.

Position direct / velocity direct
GOWRT x Vy
Position direct / velocity via variable
GOWRT x Hyy

Position via variable / velocity direct
GOWRT Hxx Vy

Position via variable / velocity via variable
GOWRT Hxx Hyy

Position via table / velocity direct
GOWTRT Vy

Position via table / velocity via variable
GOWTRT Hyy
$x \quad=$ Absolute position [travel unit]
Hxx = Index of variables with position value
Hyy $\quad=$ Index of variables with velocity
Vy = Velocity value [velocity unit]

Braking

For normal braking with the programmed acceleration (parameters K15 to K24):

STOP B

For fast braking (e.g. emergency braking) with maximum acceleration (linear as per K19 or K20, including when sinusoidal acceleration mode is selected):

STOP M

Braking and shut-off of position control
Fast braking (velocity reference $=0$) followed by position control shut-off (e.g. to set parameters for servocontroller):

STOP 0

When using STOP 0 in the sequence program: The power stage is automatically reactivated when automatic mode is terminated; that is, when manual mode (IS01) is selected.

Shutting off the control cuts power to the motor. This is not so easily permitted in all applications (e.g. lifting applications). The user must ensure that the system is not damaged and no personal injury occurs!

Restart position control by:
STOP B or
STOP M

LUST

The CDD3000 has two fast touchprobe inputs (also termed Interrupt inputs) with which the current actual position can be stored and reused in the sequence program for:

Examples:

1. Trigger positioning with touchprobe (cutting to length)

Figure 4.84 Trigger-specific advance. (1) Mark sensor

Figure 4.85 Trigger positioning. $t_{t}=$ Trigger time. (1) Positioning travel

- The axle runs with a positioning command; synchronism is inactive.
- Touchprobe is activated (SET TP4 G1 F0)
- Wait for touchprobe signal (WAIT TP4).
- The trigger signal comes on the digital input IS04 and triggers saving of the actual position.
- The command GOA TP4 11 V30 interrupts the preceding positioning command. The new target position is TP4 + 11. It is approached maintaining the velocity 30 and incorporating the preset ramps.
- If no trigger signal has arrived when the command GO TP1R $x \vee y$ is being processed, and as a result no actual position is saved, an error is triggered and the sequence program aborts.

Example program:

```
%P00(TP Cutting to length)
N010 SET 0; current position:=0
N020 GO V30; positioning job: constant velocity
N030 SET TP4 G1 F0; activating touchprobe 4 (input IS04,
rising edge)
N040 WAIT TP4; waiting for trigger: Touchprobe 4
N100 GOA TP4 11 V30; positioning job:(trigger position
N110 WAIT ST;
N120 SET 0S02=1;
N130 JMP NO20;
```

END
2. Mark synchronization

Figure 4.86 Mark synchronization
Example program:
\%POO(mark synchronization)
NO04 SET 0; current position:=0
NO05 GOSYN1; engage electronic gearing
N010 SET TP3=0; position of touchprobe $3=0$
N020 SET TP4 G1 F0; activating touchprobe 4 (input IS04, rising edge)
N040 WAIT TP4; waiting for trigger: Touchprobe 4 N100 GO R D TP3-TP4 20 V30;positioning job (TP3 - TP4 + 20),
(velocity 30)
N410 JMP NO20;
go back
END
3. Synchronization of conveyor belts

This mode of positioning can be used, for example, to synchronize two conveyor belts which are both subject to slip.

Figure 4.87 Synchronization of conveyor belts (1) Mark sensor, (2) Fan sensor

The master CDD3000 is operated in speed-controlled mode and passes its encoder simuation on to the slave CDD3000. On the slave, synchronism is active. It stores the actual positions of both touchprobes. The difference TP4 - TP3 should be x. If it is not, it is adjusted by a relative positioning of belt A.
Relative positioning travel $=x-(T P 4-T P 3)$

Figure 4.88 (1): Optimum time of arrival for both touchprobes.
(2): Touchprobe 2 arrives too early

The command GORD TP3-TP4 20 V30 shifts the synchronous position of belt A and thus restores the specified reference state.

```
%P00 (Slip compensation)
N010 SET 0; current position:=0
N020 GOSYN1; engage electronic gearing
N030 SET TP4 G1 F0; activating touchprobe 4 (input IS04,
    rising edge)
N040 SET TP3 G1 F0; activating touchprobe 4 (input IS03,
    rising edge)
N050 WAIT TP4; waiting for trigger: Touchprobe 4
N050 WAIT TP3; waiting for trigger: Touchprobe 3
N100 GO R D TP3-TP4 20 V30;positioning job (TP3 - TP4 + 20),
N110 JMP N030
END
JMP N030
END
```

4. Transmitting touchprobe position via CAN

As soon as a touchprobe position has been stored in parameter (793TPPOS) it can be transmitted via a TX-PDO.
For this the digital input IS03 or IS04 must be entered as an event for transmision in parameters (148-TXEV1; 149-TXEV2; 628-TXEV3; 629TXEV4). In the corresponding TX-PDOs index 3 of the parameter (793TPPOS) is mapped for touchprobe 3 and index 4 for touchprobe 4. With the state change of the touchprobe input the assigned TX-PDO is sent.

LUST

4 Preset solutions

Time

Axle status

Input status

Saving

4. Wait commands and saving

With these commands you can implement a delay by a specific time in milliseconds. When this time expires the program is resumed with the next set.

Direct: WAIT b
Via variable: WAIT Hxx
b $\quad=$ Waiting time in [ms] (1 ... 65535)
Hxx = Index of variables with waiting time

The program is resumed when the following condition is met.
PW reached: WAIT PW Actual position in position window ${ }^{1)}$
Axle stopped: WAIT ST Reference position $=$ target position ${ }^{2)}$

1) Positioning complete, "Axle in position" output is set
2) Positioning arithmetically complete

The program is only resumed when the relevant input shows the expected status (High or Low level).

WAIT (Ippi = 0)
WAIT (lppi = 1)
Ippi $\quad=\operatorname{Input}($ IE00 \ldots IE07, ISD00 \ldots ISD04)

The backing-up of the sequence program (and parameters and process data) to the Flash-EPROM can also be triggered by the program itself. The backup operation can only be performed with the axle at a standstill, otherwise error 35 "Impermissible command during axle movement" will be signaled. It takes approx. 6 seconds until the next command is executed.

Direct: \quad SAVE via parameter SET PARA [150] $=1$
This command can also be used to back up the files without a PC, for example for a teach-in operation (adoption of table positions).

4.10.8 Sequence programs

Important: The complete save operation takes about 5 seconds. If the device is switched off during that time, the save operation is interrupted and the device has an inconsistent paramter set. At the next power-on the error E-EEP will be signalled. The device parameters must then be reset.

Program structure

A program is divided into a header, the actual program part, and the program end.

The program header comprises one line containing the program number and, usually, a program name. The name may consist of a maximum of 20 characters.

```
%Pyy (name)
e.g. : %P00 (test program)
```

The lines of the actual program part are designated program sets. The maximum number of sets which can be stored in the servocontroller is limited to 700 (in the range N0 ... N999).

Each program set consists of a line number,
 the command and one to two operands:

```
N050 WAIT ST
```

If you want to insert a commentary, separate it off by means of a semicolon:
N050 WAIT ST ; wait for axle to stop

At the end of the program the following line (without line number) always comes:

Note:

- It is recommended to number the program sets in steps of ten (N010, N020, ...), to enable additional lines to be added more easily.
- Set blanks between the set number, command and operand (not tabulators).

From one program (main program = HP) other programs (subroutines = UP) can also be called up. The maximum nesting depth for subroutines is 10. Subroutines are structured and treated just the same as main programs.

The main advantages of using subroutines lie in:

- the clearly laid-out program structure and
- the swapping-out of multiply required program parts.

4.10.9 Program examples

\triangle
The numerical values for travel, velocity and acceleration relate to the programming units defined on the Standardizationtab.

Example 1: First commissioning

(example pre-installed after DriveManager setup)
Task: Two positions are to be approached dependent on the digital control input ISD03:

```
%P00 (Commissioning)
```

Important: All the following default values require a resolution of 1 below the standardizations! When the program starts a homing run is always executed according to the type selected under Settings. So first check the functioning of the reference cam.

```
;initialization of variables
N010 SET H10=5000; process speed in inc/1ms
N020 SET H11=655360; absolute position 1 in inc. = 10 motor
    revolutions
N030 SET H12=0; absolute position 2 in inc.
N040 SET H20=100; waiting time between positioning
    operations in ms
N100 GO 0; trigger homing mode
N110 WAIT (IS03=1); wait until input IS03=1
N120 GO W A H11 H10; approach pos. 1 from variable H11
N130 WAIT H20; waiting time
N140 WAIT (IS03=0); wait until input IS03=0
N150 GO W A H12 H10; approach pos. 2 from variable H12
N160 WAIT H20; waiting time
N200 JMP N110; close endless loop
END
```


Example 2: Approaching positions absolutely

The four positions are to be approached absolutely at velocity $\mathrm{v}=50$ and the program is then to wait 1 s in each case. For the movement back to the starting position three times the velocity is to be applied.

Figure 4.89 Approaching positions
Positions and velocities are specified directly as values; the acceleration is set according to the machine parameters.

```
%P01 (example 1)
N010 GO 0; homing mode 1)
N030 GO A200 V50; approach starting position
N040 WAIT ST; wait for axle to
N050 WAIT 1000;
N060 GOW A300 V50;
N070 WAIT 1000;
N080 GOW A400 V50;
N090 WAIT 1000;
N100 GOW A500 V50; position 3
N110 WAIT 1000;
N120 GOW A200 V150; back to starting
N130 JMP N050;
END
```

${ }^{1)}$ Wait command is not necessary, as program is only resumed on completion of homing run

Example 3: Relative positioning

In example 2 the axle is always advanced by the same distance, so a solution involving relative positioning is appropriate. A numerator contains the latest position at any point.

\%P02	(example 2)	
N010	GO 0;	homing mode
N030	GOW A200 V50;	approach starting position and wait
N040	SET C00 0 ;	set numerator $=0$
N050	WAIT 1000;	
N0 60	GOW R100 V50;	approach next position
N070	SET C00+1;	run position counter
N080	WAIT 1000;	
N090	JMP ($\mathrm{COO}<3) \mathrm{NO} 60$;	position 3 not
N100	GOW A200 V150;	yet reached back to starting position
N110	JMP N040	
END		

The solution is even more simple and elegant if the numerator is omitted and the comparison is made with the reference position (SP):

```
%P02 (example 2)
N010 GO 0; homing mode
N030 GOW A200 V50; approach starting position
    and wait
N040 WAIT 1000;
N050 GOW R100 V50; approach next position
N060 WAIT 1000;
N070 JMP (SP<500) N050; position 3 not
N080 GOW A200 V150; back to starting
N090 JMP N040
END
```

${ }^{1)}$ The comparison is made with the reference position because a comparison against the actual position is problematical. The condition is not met if this precise increment is not attained.

Example 4:

Modular programming, actuation via field bus
Task: Over field bus various functions, such as homing mode, absolute positioning and relative positioning, are requested by setting flags and processed autonomously by the axle. The parameters of the individual functions are preset by way of variables.

```
%P00 (example 4)
; sequence program for activation via bus system by access to
;variables (728-POVAR) and flags (729-POMER)
; variables used:
; H50 Home position [increments]
; H51 Absolute position [increments]
; H52 Velocity for absolute positioning [increments/1ms]
; H61 Relative position [increments]
; H62 Velocity for relative positioning [increments/1ms]
; H70 Velocity for jog mode [increments/1ms]
;initialization
N105 SET OV=0; 0 = disable override
N110 SET M80=0; initialize flag
N111 SET M81=0
N112 SET M82=0
N113 SET M83=0
N114 SET M84=0
N115 SET M85=0
N150 JMP(M80=1) P01;
N160 JMP (M81=1) P02;
N170 JMP (M82=1) P03;
N180 JMP (M83=1) P04;
N190 JMP (M84=1) P05;
N200 JMP (M85=1) P06;
N300 JMP N150;
END
%P01 (find home)
N010 WAIT ST
N020 GO 0 homing mode
N030 SET M80=0 reset start flag
END
%P02 (go home)
N010 WAIT ST
N020 GO A H50 H52; approach zero
N030 JMP (M85=1) P06; stop axle
N040 JMP (ST=0) N030
N050 SET M81=0 reset start flag
ND
%P03 (absolute pos.)
N010 WAIT ST
N020 GO A H51 H52; positioning
N030 JMP (M85=1) P06; stop axle
N040 JMP (ST=0) N030
N050 SET M82=0;
END
```

```
%P04 (relative pos.)
N010 WAIT ST
N020 GO R H61 H62; positioning
N030 JMP (M85=1) P06; stop axle
N040 JMP (ST=0) N030
N050 SET M83=0;
END
%P05 (jog)
N010 STOP B; stop axle
N020 WAIT ST; wait for axle to stop
N030 GO V H70; jog
N040 SET M84=0; reset start flag
END
%P06 (Stop)
N010 STOP B;
N020 WAIT ST;
N030 SET M85=0; reset start flag
END
stop axle
wait for axle to stop
```


4 Preset solutions

Example 5:

Application-specific sequence of a homing run
Regardless of the selectable homing mode types, a custom sequence program can also be used for reference.

Here a homing run is shown which eliminates the need for sensors and the axle is referenced by approaching a hardware stop.

In this it should be noted that, when approaching block, the torque set under Limits is exerted by the drive. This homing run is not reproducible to an increment's accuracy.

In the example a homing movement in negative direction is executed.

```
%P01 (homing mode)
N010 SET H10=-100; init homing mode speed
N011 SET H12=20; clearance travel
N020 SET PARA[805]=50; write parameter 805-SCALE=50%,
N025 SET 0;
N030 GO V H10;
N031 WAIT 300;
N035 SET H11=IP;
N040 WAIT 50;
N050 JMP (IP<H11) N035;
N060 STOP B;
N070 GO W R H12 H10;
N080 SET 0;
N090 SET OS01=1;
N095 SET M99=1;
N100 SET PARA[805]=100
homing mode
reset torque
to 100%
END
```

4 Preset solutions

4.10.10 Calculation aids

Example for determining the standardization factors for travel, velocity and acceleration

To be able to specify the positions of a linear application in a unit of length, for example, the position controller must be told the context. This is done on the Units tab.

Example: Linear axle with toothed belt drive

Motor: $\quad 1 U_{\text {motor }} \Leftrightarrow 65536$ increments (applies regardless of motor and encoder type)

Gearing: $\quad i=4$
Linear $\quad 1 U_{\text {axle }} \Leftrightarrow 192 \mathrm{~mm}$
transmission:

In one motor revolution the carriage covers
$s=\frac{\text { Pinion circumference }}{\text { Gear transmission ratio }}=\frac{192 \mathrm{~mm}}{(\mathrm{i}=4)}=48 \mathrm{~mm}$

The following translations are required:

	Desired programming unit	Internal unit
Travel:	mm	Incr.
Velocity:	$\mathrm{m} / \mathrm{min}$	Incr./ ms
Acceleration:	$\mathrm{m} / \mathrm{s}^{2}$	Incr./ ms^{2}

Travel resolution

General rule:
Here:

$$
1 \mathrm{U}=48 \mathrm{~mm}=65536 \mathrm{Incr} . \quad \text { Programming unit }=\frac{\text { Numerator }}{\text { Denominator }} \cdot \text { Incr. }
$$

Example - requirement is default in programming unit mm :

$$
1 \mathrm{~mm}=\frac{65536}{48} \text { Incr. }
$$

The ratio of numerator to $\begin{aligned} & \text { denominator should be chosen as } \\ & \text { small as possible. Reduction }\end{aligned} \quad \frac{\text { Numerator }}{\text { Denominator }}=\frac{65536 / 16}{46 / 16}=\frac{4096}{3}$ produces the following:

Result:

$$
\text { Numerator }=4096 \text { Denominator }=3
$$

$>$ The positions can then be specified in mm, i.e. entered on the "Standardization" tab.

Velocity resolution

General rule:
Programming unit $=$ Velocity $\cdot \frac{\text { Incr. }}{\mathrm{ms}} \quad$ where: $1 \mathrm{~mm}=\frac{65536 \operatorname{Incr} .}{48}$

Example - requirement is input in of desired unit $0.01 \mathrm{~m} / \mathrm{s}$:

$$
\frac{10 \mathrm{~mm}}{\mathrm{~s}}=\frac{10 \cdot \frac{65536 \mathrm{lncr} .}{48}}{\mathrm{~s}}
$$

Convert time units into ms
($1 \mathrm{~s}=1000 \cdot 1 \mathrm{~ms}$):

$$
\frac{10 \mathrm{~mm}}{\mathrm{~s}}=\frac{10 \cdot 65536 \mathrm{lncr} .}{48 \cdot(1000 \cdot 1 \mathrm{~ms})}
$$

The internal unit is isolated, the factor represents the velocity standardization factor.

$$
\frac{10 \mathrm{~mm}}{\mathrm{~s}}=\underbrace{\frac{10 \cdot 65536}{48 \cdot 1000}} \cdot \frac{\mathrm{Incr} .}{1 \mathrm{~ms}}
$$

Result:

$$
\text { Velocity = } 13.653
$$

The velocity can then be entered on the "Standardization" tab in 0.01 m/s.

Acceleration resolution

General rule: \quad Programming unit $=$ Accel. $\cdot \frac{\operatorname{lncr} .}{\mathrm{ms}}$

Example - requirement is default in unit $0.1 \mathrm{~m} / \mathrm{s}^{2}$:
Convert time units into (5 ms$)^{2}$ (1 $\mathrm{s}^{2}=200 \cdot 5 \mathrm{~ms} \cdot 200 \cdot 5 \mathrm{~ms}$):

The internal unit is isolated, the factor represents the acceleration standardization factor.

Result:

$$
\begin{aligned}
& \frac{100 \mathrm{~mm}}{\mathrm{~s}^{2}}=\frac{100 \cdot 65536 \mathrm{lncr} .}{48 \cdot(1000 \cdot 1 \mathrm{~ms})(1000 \cdot 1 \mathrm{~ms})} \\
& \frac{100 \mathrm{~mm}}{\mathrm{~s}^{2}}=\underbrace{\frac{100 \cdot 65536}{48 \cdot 1000 \cdot 1000} \cdot \frac{\mathrm{Incr} .}{\mathrm{ms}^{2}}}
\end{aligned}
$$

Acceleration $=0.137$
The acceleration can then be entered on the "Standardization" tab in $0.1 \mathrm{~m} / \mathrm{s}^{2}$.

Notes on use of linear encoder systems:

The CDD3000 drive system always makes a fixed link between the connected encoder system and the motor. The important factor is that the drive system scales all encoder systems to 16 bits per motor revolution. That means, regardless of the preset lines per revolution and resolution of the position encoder, one motor revolution is always represented as 65536 increments.

In drive systems in which the encoder is mounted on the shaft of a rotating motor, the only information required for this is how many increments or sin/cos oscillations per revolution occur. Internally, and when standardization to increments, this value is then automatically scaled to 65536 increments per motor revolution.

In rotational drive systems in which a second encoder system is deployed for position control, the following points need to be considered:

A resolver is always used as the first encoder, attached to the motor shaft accordingly.

A rotary encoder or a linear encoder system can be used as the second encoder.

To enable the position control to work correctly, the correlation between the preset lines per motor revolution and the actual number of increments per motor revolution must be set.

The lines per motor revolution are adjustable in the range from 1 to 8190 increments. How many increments per motor revolution are actually counted depends on the mechanical design of the application.

It is always advantageous if the preset lines per revolution match the actual lines per revolution as closely as possible. The better the match, the better will be the quality of speed pre-control.

The actual mechanical correlations should then be taken into account in standardization of the units for travel, velocity and acceleration.

The following two examples are provided to aid understanding:

1. Example: Optical encoder

Encoder configuration:
Lines per motor revolution $=2048 * 300 \mathrm{~mm} / 400 \mathrm{~mm} / 3=512$ incr. on encoder

The CDD3000 servocontroller automatically represents this internally as 2^{16} increments $=65536$ incr.

Standardization of units:
Travel: Ratio incr. / travel unit -> 1 revolution on motor $=100 \mathrm{~mm}$ advance -> 65536 incr.
1.1 Travel standardization configuration

65536 incr. correspond to 100 mm advance
1.2 Velocity configuration

Desired unit mm/s
Internal unit is always incr./ms
$->$ Incr./ms $=\mathrm{k}$ * mm/s $\mathrm{k}=$ Incr./ms * s / mm
$\mathrm{k}=\mathrm{Incr} . / \mathrm{ms}$ * $1000 \mathrm{~ms} / 65536$ Incr. Representation without unit
$\mathrm{k}=1.526$
1.3 Acceleration configuration

Desired unit mm/s²
Internal unit is always incr./ms ${ }^{2}$
$->$ Incr. $/ \mathrm{ms}^{2}=\mathrm{x}^{*} \mathrm{~mm} / \mathrm{s}^{2} \quad \mathrm{x}=\mathrm{Incr} . / \mathrm{ms}^{2}{ }^{*} \mathrm{~s}^{2} / \mathrm{mm}$
$x=\operatorname{Incr} . / \mathrm{ms}^{2}$ * $(1000 \mathrm{~ms})^{2 / 65536}$ Incr. Representation without unit
$x=1525.88$

2. Example: Linear scale

Encoder configuration:
Lines per motor revolution $=30 \mathrm{~mm}->30000 \mu \mathrm{~m}$
Maximum configurable number of lines $=8190$ inkr. ! This must be allowed for in travel standardization.

The CDD3000 servocontroller represents one motor revolution internally as 2^{16} increments $=65536$ incr.

Standardization of units:
Travel: Ratio incr. / travel unit -> 1 revolution on motor $=30000 \mu \mathrm{~m}$ advance -> 65536 incr.
2.1 Travel standardization configuration

Correction for difference between preset number of lines and increments actually delivered by encoder:

65536 incr. * $30000 / 8190=240058$ incr. corresponding to $30000 \mu \mathrm{~m}$
Abbreviate fraction to representable parameter values:
$240058 / 30000=16556 / 2069$ corresponding to best possible adaptation with low rounding error
2.2 Velocity configuration

Desired unit mm/s
Internal unit is always incr./ms
-> Incr./ms = k * mm/s k = Incr./ms * s/mm
$\mathrm{k}=$ Incr./ms * $1000 \mathrm{~ms} / 240058$ incr. Representation without unit
$\mathrm{k}=0.0042$
2.3 Acceleration configuration

Desired unit mm/s²
Internal unit is always incr./ms ${ }^{2}$
$->$ Incr. $/ \mathrm{ms}^{2}=\mathrm{x}^{*} \mathrm{~mm} / \mathrm{s}^{2} \quad \mathrm{x}=\mathrm{Incr} . / \mathrm{ms}^{2}{ }^{*} \mathrm{~s}^{2} / \mathrm{mm}$
$x=$ Incr. $/ \mathrm{ms}^{2}$ * $(1000 \mathrm{~ms})^{2} / 240058$ incr. Representation without unit
$x=4.166$

LUST

5 Software functions

$5.1 \quad$ Inputs 5-3
5.1.1 Analog inputs 5-4
5.1.2 Digital inputs 5-10
5.1.3 Digital inputs User module UM8140 (optional) 5-21
5.1.4 Virtual (digital) inputs 5-23
5.2 Outputs 5-24
5.2.1 Digital outputs 5-25
5.2.2 Digital outputs, user module UM8140 5-46
5.2.3 Virtual (digital) outputs 5-47
5.3 Loop control 5-48
5.3.1 Control software 5-49
5.3.2 Speed control / position control 5-51
5.4 Limit values 5-59
5.4.1 Limit values 5-60
5.4.2 Tolerances 5-61
5.4.3 Tracking error 5-63
5.4.4 Stop ramps 5-64
5.5 Motor and encoder 5-65
5.5.1 Motor 5-66
5.5.2 Motor protection 5-68
5.5.3 Encoder 5-71
5.5.4 Find commutation 5-79
5.5.5 Linear motors 5-90
5.6 Actual values 5-92
5.6.1 Temperatures 5-93
5.6.2 Device data 5-94
5.6.3 Slots 5-95
5.6.4 Field bus 5-96
5.7 Error messages 5-97
5.8 Bus systems 5-99
5.8.1 PROFIBUS 5-100
5.8.2 CANLust 5-101
5.8.3 CANopen 5-103
5.9 Master encoder / encoder simulation 5-104
5.9.1 Encoder simulation 5-105
5.9.2 Master encoder 5-109
5.9.3 Encoder simulation via SSI 5-113
5.9.4 Cam gear 5-116

5.1 Inputs

Figure 5.1 User screen: Inputs

The CDD3000 servocontroller includes:

- Two analog inputs (ISA0, ISA1)
- Six digital inputs (ENPO, IS00 to IS04)
- Two virtual (digital) inputs (FIF0, FIF1)
- Optionally a further eight digital inputs (IE00 to IE 07).

Each input of the servocontroller has a parameter which assigns it a function. These parameters are termed function selectors, and are located together with the respective input options in the "Inputs" setup screen in the DriveManager (from V 3.0), see 5.1.

5.1.1 Analog inputs

Inputs...

Analog

Function
Effect

- Definition of the internal processing of the analog input signals

(1) Analog reference input or use as a digital input
(2) Input filter for fault isolation from 0 to 64 ms
(3) Backlash function for fault isolation around zero
(4) Standardization of the analog input
(5) Analog value
(6) Digital value
$x \quad$ Number of the input (0/1)
Figure 5.2 Function block for adaptation of the analog inputs

Figure 5.3 Analog Inputs tab

5 Software functions

DM	Meaning	Value range	Unit	Parameter
Function	Assignment of a function for the relevant analog input	see table "Settings of analog inputs"	$/$	180_FISA0 181_FISA1 (_IN)
Backlash	Backlash function for fault isolation around zero. See figures 5.4 and 5.5	$0-90$	$\%$	192_IADB0 193_IADB1 (IN)
Filter	Input filter for fault isolation	$0-64$ see 5.2	ms	188_AFIL0 189_AFIL1

Table 5.1 Analog inputs - basic settings

Configuration options, ISA0 (10 V):

Figure 5.4 Configuration options, ISAO
Configuration options, ISA1 (0-10 V):

Figure $5.5 \quad$ Configuration options, ISA1

Filter setting:

5

Setting	Filter：
0	0 ms
1	2 ms
2	4 ms
3	8 ms
4	16 ms
5	32 ms
6	64 ms

Table 5．2 Filter time constants，analog inputs

Settings of the CDD3000 analog inputs

Bus	KP／DM	Function	8	苟	豹	$\begin{aligned} & \text { O8 } \\ & \underline{6} \end{aligned}$	苞	8	第	8	${ }^{\text {d }}$	S
45	ANALG	Analog reference input： $15 A 0= \pm 10 \mathrm{~V}$ and $\mid S A 1=0$ to 10 V	－	－	－	－	－	X	\checkmark	－		－
46	SPEED	Direct input for analog speed references $\pm 10 \mathrm{~V}$ ： Sampling cycle 8 kHz	－	－	－	－	－	\checkmark	－		－	－
47	GEARR	No function	－	－	－	－	－	\checkmark	－	－		－
48	SCALE	Torque scaling 0－100\％	－	－	－	－	－	－	\checkmark	－	－	－
49	OVR1	Analog input ISA00 usable in sequence program	－	－	－	－	－	\checkmark	－	－	－	－
50	OVR2	Analog input ISA00 usable in sequence program	－	－	－	－	－	\checkmark	\checkmark	－	－	－
51	TORQUE	quick torque reference channel	－	－	－		－	\checkmark	－	－	－	－
$\boldsymbol{\Sigma}$ ：Input usable X：Factory setting －Input not usable												

Table 5．3 Settings of the CDD3000 analog inputs

Note：The analog inputs can also be assigned digital functions．
－Functions of the digital inputs，see section 5．1．2
－Isolation of analog and digital inputs，see section 2．6．

LUST

Option for setting ANALG and SPEED

Functions/options of the CDD3000 analog inputs

(45) ANALG

Preset solution: Torque/speed control, $\pm 10 \mathrm{~V}$ reference.
Analog reference input for speed or torque references, sampling cycle 1 kHz (1 ms)

Resolution, ISAO ($\pm 10 \mathrm{~V}$): 12-bit
ISA1 (0 to 10 V): 10-bit
That is to say: 1 bit corresponds to approx. 4.88 mV or at 3000 rpm approx. 1.465 rpm (ISA0).

(46) SPEED

Preset solution: Speed control with external position control
Direct input for analog references bypassing the reference structure, sampling cycle $8 \mathrm{kHz}(125 \mu \mathrm{~s})$; applies only to ISA0.

```
M0ption analog inputx
```


Setting analog functions

```
10V corresponds to _ 3000 re_ rom
Qk Cancel
```

Figure 5.6 Standardization of the analog inputs

(47) No function

(48) SCALE

Torque limitation (online) $0-100 \%$ of the preset maximum torque (tab: Limit values and tolerances)

Important: Also effective for emergency stop/quick stop!

Note: In operation via field bus in parameter 805_SCALE the maximum torque ($0 . . .100 \%$) can be written as a number value (no analog signal sent).

(49) / (50) OVR1 and OVR2

Preset solution: Positioning, free programmable
Override - evaluation of analog inputs
Channels ISA0 and ISA1 are usable in the sequence program.
There are 2 functions which can be used in parallel:

1. Override velocity standardization

The velocity override is entered via analog channel ISA1, provided ISA1 = OVR2 is set. The unipolar analog value 0 to 10 V corresponds to a percentage velocity change of $0-150 \%$. This value is written in display parameter POOVR (format: usign8) and to the variable OV, which is generally usable in the sequence program.
The override function must be explicitly activated in the sequence program with the command SET OV = 1 .
2. Use of both analog inputs in the sequence program The analog inputs ISA0 and ISA1 are each usable in the sequence program, provided ISA0 = OVR1 and ISA1 = OVR2 are set. The analog values are written to the corresponding variables (format: usign8) OV1 (-10 V to $+10 \mathrm{~V}=800-7 \mathrm{FF} \mathrm{Hex}$) and OV2 (0 V to +10 V $=0-3 F F$ Hex).

Note:
For more information on use of the override function in the I-Motion sequence program, see section 4.10.7 "Command set"
(51) Torque
quick torque reference channel
The TORQUE (51) setting can be selected only at the analog input ISA00. Since this setting relates to the control structure, the sampling cycle of the torque reference is set either to $8 \mathrm{kHz}(125 \mu \mathrm{~s})$ or to $16 \mathrm{kHz}(62,5 \mu \mathrm{~s})$, depending on the power stage switching frequency.

Important: For this function, backlash and filter time are deactivated.

5.1.2 Digital inputs

Function

Effect

- The function selectors determine the function of the digital inputs.
- Free function assignment of the digital inputs
(1)

Figure 5.7 Function block for adaptation of the digital inputs

Inputs...

Digital

Figure 5.8 Digital Inputs tab

DM	Meaning	Value range	Unit	Parameter
IS00	Function selector Standard input ISD00	see Table 5．5	1	210＿FIS00 ＿IN）
IS01	Function selector Standard input ISD01	see Table 5．5	1	211＿FIS01 ＿IN）
IS02	Function selector Standard input ISD02	see Table 5．5	1	212＿FIS02 ＿IN）
IS03	Function selector Standard input ISD03	see Table 5．5	1	213＿FIS03 ＿IN）
IS04	Function selector Standard input ISD04	see Table 5．5	1	214＿FIS04 ＿IN）

Table 5．4 Digital inputs－basic settings

Settings of the CDD3000 digital inputs：

Bus	KP／DM	Function	8	哥	㒸	$\begin{aligned} & 8 \\ & \underline{6} \\ & \hline \end{aligned}$	苞	8	\％	（tion
0	OFF	Input off	\checkmark	\checkmark	X	X	X	X	X	X
1	START	Start control	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v
2	INV	Reference is inverted，i．e．direction reversed	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v
3	／STOP	／Quick stop：Stop ramp is executed．Attention：Signal is Low－Active	\checkmark							
4	ADD1	Offset for reference selector 1 （RSSLI）：Reference selector is advanced by the value in parameter 289 SADD1．	\checkmark							
5	ADD2	Offset for reference selector 2 （RSSL2）：Reference selector is advanced by the value in parameter 290 SADD2．	\checkmark							
6	TBO	Speed and position table，index 0 binary driving set selection in positioning with fixed positions，bit 0	\checkmark							
7	TB1	Speed and position table，index 1	\checkmark							
8	TB2	Speed and position table，index 2	\checkmark							
9	TB3	Speed and position table，index 3	\checkmark							
10	TB4	Speed and position table，index 4	\checkmark	v						
11	PGM0	Selection of sequence program，index 0	\checkmark	v						
12	PGM1	Selection of sequence program，index 1	\checkmark	v						
13	PGM2	Selection of sequence program，index 2	\checkmark							
14	PGM3	Selection of sequence program，index 3	\checkmark	v						
15	PGM4	Selection of sequence program，index 4	\checkmark							
16	PGM5	Selection of sequence program，index 5	\checkmark							
17	PGM6	Selection of sequence program，index 6	\checkmark	v						
18	PGM7	Selection of sequence program，index 7	\checkmark							
$\begin{array}{\|ll\|} \hline \boldsymbol{V}: & \text { Input usable } \\ \mathrm{x}: & \text { Factory setting } \\ - & \text { Input not usable } \\ \hline \end{array}$										

Table 5．5 Settings of the CDD3000 digital inputs

LUST

5 Software functions

Bus	KP/DM	Function	8	哥	O	$\begin{aligned} & 8 \\ & \underline{y y} \end{aligned}$		8	질	
19	OMRUN	No function	\checkmark							
20	/LCW	Limit switch evaluation right: Can be released in manual mode at left. Attention: Low-Active	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
21	/ LCCW	Limit switch evaluation left: Can be released in manual mode at right. Attention: Low-Active	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
22	E-EXT	External error: Error messages from external devices produce an error message with response as defined in parameter 524 R-EXT.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
23	TIPP	J 0 g , positive direction: In manual mode the axle can be moved at slow or quick jog speed.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
24	TIPM	Jog, negative direction: In manual mode the axle can be moved at slow or quick jog speed.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
25	RCUP	No function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
26	RCDN	No function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
27	TBEN	Enable table position: Transfer the binary code and run the relevant driving set	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
28	GO	Start homing mode/sequence: Positioning, free programmable: Start the sequence program or in manual mode start homing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark
29	AUTO	Automatic mode: Positioning, free programmable	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
30	FEHLD	Feed hold: The ongoing positioning operation is interrupted and resumed following resetting.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
31	RIHLD	Update: The sequence program is interrupted and the ongoing positioning operation is completed.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
32	OPTN1	Usable by module at slot 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
33	OPTN2	Usable by module at slot 2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
34	POMOD	Digital input usable in sequence program in positioning, free programmable	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
35	RSERR	Reset error: Error messages are reset if the error is no longer present.	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
36	ENCAM	Activate cam gear function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
37	USER0	Input can be used by modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	v
38	USER1	Input can be used by modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	v
39	/NPG1	Encoder simulation with G1 encoder: Output of (simulated) zero pulse suppression	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
$\boldsymbol{\nu}$: Input usable X: Factory setting - Input not usable										

Table 5.5 Settings of the CDD3000 digital inputs

Bus	KP/DM	Function	8	흠	苞	苞	\%	8	-	
40	LREG	Activate position controller in speed control	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	\checkmark
41	ENC	HTL master encoder: Input for evaluation of a 24 V pulse generator with lines per revolution 2^{n} ($n=5$ to 14)	-	-		\checkmark	\checkmark	-	-	
42	RECAM	Evaluation of a reference cam for zero determination in positioning	-	-		-	\checkmark	-	-	
43	TP3	Touchprobe of input ISD03 active	-	-		\checkmark	-	-	-	
44	TP4	Touchprobe of input ISD04 active	-	-	-	-	\checkmark	-	-	
$\boldsymbol{\sim}$: Input usable X: Factory setting - Input not usable										

Table 5.5 Settings of the CDD3000 digital inputs

Functions/options of the CDD3000 digital inputs
(0) OFF

Input is without function/disabled.
High level at this input is without effect.
(1) START

Start control with preset reference (condition: Input ENPO at high level)

Option for setting START

Automatic start (Autostart)

Input options X

Setting for start enable:
Allow automatic start

Qk Cancel Apply

Figure 5.9 Option: Autostart

Loop control is automatically activated after power-up (including after short-time power failure) when START signal is connected. A positive edge is not required.
a)

b)

Figure 5.10 (Switch-on a) without autostart and b) with autostart

Note: Between power-up and "ready" the device is initialized, which takes several seconds (typically > 4 seconds). To conserve digital inputs, a virtual input (IF00 or IF01) can be used for the autostart.

(2) INV

The applied reference value is inverted, i.e. the direction of rotation is reversed.

(3) /STOP

This input (Low-Active) triggers an emergency stop (quick stop); that is, the drive is braked to a standstill as fast as possible with the preset stop ramp, and held at that speed (response time: 1 ms).

Reset: Reset input/STOP and START.
Option 885_QSOPC Quick stop /> control transition [only possible in speed control]

Important: The input ENPO (controller enable) must remain set during the quick stop condition, otherwise the motor may rotate freely or spin out of true.

(4) ADD1

Offset for reference selector 1 . Reference selector 1 is advanced by the value in parameter 289 SADD1 (Selector Addition). It is used to switch between various reference sources.

Example: Reference selector (280 RSSL1) set to FA0, i.e. analog input 0 ($\pm 10 \mathrm{~V}$).

Parameter SADD1 has the value 1.
With High level at input ADD1, RSSL1 is switched from FA0 to FA1.
From then on analog input 1 is active, and the reference value of input 0 is ignored.
(5) ADD2

As ADD1, offset for reference selector 2.

For more information on the reference structure see section 4.1.
(6) ... (10) TBO to TB4

1. Binary fixed speed selection from speed table for "speed control with fixed speeds".
2. Binary driving set selection from position table for "positioning with fixed positions".

The set number of the fixed speed/positioning set corresponds to the binary code applied at control inputs TB0 to TB4.

Figure 5.11 Reference processing: Positioning, fixed positions
(11) ... (18) PGM0 to PGM7

Program selection for "positioning, free programmable":

Figure 5.12 Program Selection tab

If the code on the Program Selection tab is set to "NOCOD, BIN or BCD", the combination on inputs PGM0 to PGM7 for selection between various process programs applies.

(19) No function

(20) / (21) /LCW and /LCCW

The input evaluates a hardware limit switch (Low-Active) in positive (/LCW) or negative (/LCCW-) direction of the axle.

If a limit switch is tripped, the axle movement is immediately stopped with the maximum linear braking acceleration (Ramps tab).

If a limit switch has been tripped, the axle can be released in manual mode in the other direction (jog via inputs or DriveManager). During the homing run the function of the limit switches is to reverse direction.

(22) E-EXT

By way of this input the position controller can be told that another device is in an error state. Response: Stop axle and display E-EXT.

(23) / (24) TIPP and TIPM

In manual mode the axle can be positioned by way of these inputs at the speeds set under the "Velocities" tab for slow and quick jog. In addition, these inputs can be used by the program in automatic mode.

Example: To move the axle in positive direction in slow jog mode, the 'TIPP' input is operated.

If the second input (TIPM') is then activated, the axle moves in quick jog mode.
(25) / (26) No function

(27) TBEN

In the "positioning with fixed positions" preset solution, with this input the binary code = positioning set connected to control inputs TB0 to TB4 is adopted and executed.
(see section 4.9 Positioning with fixed positions).

(29) GO

In automatic mode the selected program is started by way of this input (where the sequence program start condition is STD (0)).
In manual mode (AUTO = low level) a homing run is carried out if a low/ high edge change occurs at the GO start input.

The Go signal can be cancelled after 10 ms (start pulse).

(29) AUTO

With the low/high edge change at the AUTO input automatic mode is selected and with input GO the selected program is started (see Program selection PGMx).

Manual mode (jog mode, setup mode) is selected by a low level at the AUTO input.

If the high level is cancelled during motion, the axle is immediately stopped and automatic mode is aborted.

In the event of a program abort by deselection of Automatic, the program can no longer be resumed, only restarted. If resumption of the program is required, it is advisable to use the FEHLD (Feed hold) or RIHLD (Update) input.

Figure 5.13 Timing AUTO

(30) FEHLD

Feed hold is the prerequisite for all axle movements; that is, the axle can only be positioned when the high level is applied at this input (provided this function has been assigned to an input).

An ongoing positioning operation is aborted with the high/low edge at the FEHLD input, with the programmed braking ramp. With the low/high edge processing is resumed with the next program set.

(31) RIHLD

The update enable permits the editing of individual sets of a program (provided this function has been assigned to an input).

When this signal is removed (low level) the program is interrupted, but any ongoing positioning operation is terminated.

When the signal (high level) is reapplied, the program is automatically resumed at the point where the interruption occurred.

(32) OPTN1

The input is usable by the module at option slot 1.

(33) OPTN2

The input is usable by the module at option slot 2.

(34) POMOD

Positioning, free programmable:
This input is usable in the sequence program, i.e. it can be polled and processed further in the current program.

(35) RSERR

With this input an error can be reset (when the cause has been eliminated).
(36) ENCAM

This input activates the "Cam gear" function.
(37) ... (38) USER0 and USER1

These inputs can be used by special software.
(39) /NPG1 Encoder simulation G1

With this input the "simulated" zero pulses can be suppressed.

(40) LREG

This input activates the position controller in addition to the active speed controller (position reference is current position, which is held).

(41) ENC

Encoder connection for A or B track of a HTL (24 V) master encoder.
Differential signals cannot be evaluated.
Usable as master encoder in:

- Speed control with reference via pulse input
- Electronic gearing as function of sequence program

(42) RECAM

Positioning, free programmable:
The input IS04 is intended for connection of a reference cam and so is equipped with a special hardware. Evaluation of the reference cam for sero pulse definition only.

5 Software functions

5.1.3 Digital inputs User module UM8140 (optional)

Inputs...

Digital UMM 8140

(43) / (44) TP3 and TP4

Positioning, free programmable:
The CDD3000 has 2 fast Touchprobe inputs with which the current actual position can be stored and reused in the program, e.g. for dynamic measurement or for print mark synchronization.

If Touchprobe 3 is activated, on the next rising edge at input ISD03 (Touchprobe TP4 = ISD04) the current actual position is stored.

Figure 5.14 Digital Inputs UM8I40 tab

The servocontroller can optionally be equipped with a UM8I40 user module (terminal expansion), providing eight additional digital inputs (and four digital outputs).

LUST

DM	Meaning	Value range	Unit	Parameter
IEOO	Function selector external input IE00	see Table 5.5	I	$\begin{gathered} \text { 214_FIEO0 } \\ (\text { IN }) \end{gathered}$
IE01	Function selector external input IE01	see Table 5.5	1	$\begin{gathered} \text { 215_FIE01 } \\ \text { (_IN) } \end{gathered}$
IE02	Function selector external input IE02	see Table 5.5	1	$\begin{gathered} \text { 216_FIEO2 } \\ \text { (IN) } \end{gathered}$
IE03	Function selector external input IE03	see Table 5.5	1	$\begin{gathered} \text { 217_FIE03 } \\ (\mathrm{IN}) \\ \hline \end{gathered}$
IE04	Function selector external input IE04	see Table 5.5	/	$\begin{gathered} \text { 218_FIE04 } \\ (\mathrm{IN}) \\ \hline \end{gathered}$
IE05	Function selector external input IE05	see Table 5.5	/	$\begin{gathered} \text { 219_FIE05 } \\ \text { (IN) } \\ \hline \end{gathered}$
IE06	Function selector external input IE06	see Table 5.5	/	$\begin{gathered} 220 \text { FIE06 } \\ (\mathrm{IN}) \\ \hline \end{gathered}$
IE07	Function selector external input IE07	see Table 5.5	1	$\begin{gathered} \text { 221_FIE07 } \\ \text { (IN) } \end{gathered}$

Table 5.6 Digital inputs UM8I40 - basic settings

Function of external digital inputs, see section 5.1.2 "Digital inputs".

Note: When the option module is not plugged in (present), the functions can be selected by the status always remains Low (0).

5 Software functions

5.1.4 Virtual (digital) inputs

```
Inputs...
```

Virtuell

Figure 5.15 Virtual Inputs tab

The CDD3000 servocontroller provides two virtual inputs with the fixed value 1 (High level). They can be used instead of a permanently active switch (e.g. for the "Autostart" function (controller enable)).

DM	Meaning	Value range	Unit	Parameter
FIF0	Function selector virtual fixed input 0	see Table 5.5	$/$	222_FIF00 (IN)
FIF1	Function selector virtual fixed input 1	see Table 5.5	$/$	223_FIF01 (IN)

Table 5.7 Virtual inputs - basic settings

Function of virtual inputs, see section 5.1.2 "Digital inputs".

LUST

5 Software functions

5.2 Outputs

Figure 5.16 Outputs user screen

The CDD3000 servocontroller includes:

- two digital standard outputs (OS00, OS01), one relay output (OS02) and one output for control of a holding brake (OS03)
- two virtual digital outputs (OV00, OV01)

Each output of the servocontroller has a parameter which assigns it a function. These parameters are termed function selectors, and are located together with the respective additional output options in the "Outputs" setup screen in the DriveManager (from V 3.0), see Figure 5.16.

LUST

5.2.1 Digital outputs

Outputs...

Digital

Function Effect

- The function selectors determine the function of the digital outputs.
- Free function assignment of all digital outputs

(1)

(1) Selection of function of digital output
(2) Digital value

Figure 5.17 Function block for adaptation of the digital outputs

Figure 5.18 Digital Outputs tab

DM	Meaning	Value range	Unit	Parameter
OS00	Function selector Standard output OSD00	See table 5.9	-	240_FOS00 (_OUT)
OS01	Function selector Standard output OSD01	See table 5.9	-	241_FOS01 (_OUT)
OS02	Function selector Standard output OSD02	See table 5.9	-	242_FOS02 (_OUT)
OS03	Function selector Standard output OSD03	See table 5.9	-	247_FOS03 (_OUT)

Table 5.8 Digital outputs - basic settings

Settings of the CDD3000 digital outputs

Bus	KP/DM	Function	8	若	ơ	詈	¢ ¢ ¢ O	
0	OFF	Output off	\checkmark	\checkmark	X	X	X	X
1	ERR	Collective error message	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2	WARN	Collective warning message	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
3	ERRW	Collective warning or error message	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
4	/ERR	Collective error message negated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
5	/WARN	Collective warning message negated	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
6	/ERRW	Collective warning or error message negated	X	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
7	ACTIVE	Loop control in function (power stage is active), current applied to motor	\checkmark	X	\checkmark	\checkmark	\checkmark	\checkmark
8	ROT_R	Clockwise rotation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
9	ROT_L	Anti-clockwise rotation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
10	ROT_0	Motor standstill (power stage is active)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
11	LIMIT	Reference limitation active	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
12	REF	Reference reached	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
13	SIO	Usable by serial interface RS232	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
14	OPTN1	Usable by slot 1 (communications module)	\checkmark	\checkmark	\checkmark	\checkmark	-	-
15	OPTN2	Usable by slot 2 (communications module)	\checkmark	\checkmark	\checkmark	\checkmark	-	-
16	POMOD	Usable in sequence program (positioning, free programmable)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
17	/EFLW	No tracking error (positioning, free programmable)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
18	BRAKE	Holding brake function	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
19	S_RDY	Device initialized	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
20	C_RDY	Device ready	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
21	SCAVM	Speed threshold reached	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\boldsymbol{v} : Input usable X : Factory setting Input not usable								

Table 5.9 Settings of the CDD3000 digital outputs

Bus	KP/DM	Function	8	务	8	最	\%	
22	TCAVM	Torque threshold reached	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
23	REFOK	Reference point defined (positioning, free programmable)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
24	PRRDY	End sequence program (positioning, free programmable)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
25	CCOUT	Activated by cam gear	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
26	USERO	Reserved for modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
27	USER1	Reserved for modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
28	USER2	Reserved for modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
29	USER3	Reserved for modified software	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
30	T_RDY	Technology ready	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
\boldsymbol{V} : Input usable X: Factory setting - Input not usable								

Table 5.9 Settings of the CDD3000 digital outputs

Functions/options of the CDD3000 digital outputs
(1) OFF

Output is off.
High level: No function
Low level: No function
(1) ERR

High-Pegel: Device in error state. The error must be eliminated and acknowledged for operation to be restarted.

Low level: No error

(2) WARN

Collective warning message
High level: Warning active, device still ready
Low level: No warning

Collective error message

(3) ERRW

Collective warning or error message
High level: Warning active or device in error state
Low level: No warning and no error
(4) /ERR

Collective error message negated (low-active), wire break proof output High level: No error

Low level: Device in error state. The error must be eliminated and acknowledged for operation to be restarted.
(5) /WARN

Collective warning message negated (low-active), wire break proof output
High level: No warning
Low level: Parameterizable warning limit exceeded, device still ready
(6) /ERRW

Collective warning or error message negated (low-active), wire break proof output

High level: No warning and no error
Low level: Parameterizable warning limit exceeded or device in error state

(7) ACTIVE

Loop control in function, power stage is active
High level: Power stage active
Low level: Power stage not active, no current applied to motor

5 Software functions

(12) REF

Reference reached (see section 5.4.2 Tolerances)
High level: The specified reference is reached
Low level: Reference not reached
Option 789_POMSK Masking of 'reference reached' status flag

Note: This function is only operative in position control

(13) SIO

Usable by serial interface RS232 (X4)
Output can be set via the serial interface by the LustBus control word
High level: Output set
Low level: Output not set

(14) OPTN1

Usable by slot 1 (communications module)

(15) OPTN2

Usable by slot 2 (communications module)

(16) POMOD

Preset solution positioning, free programmable:
Output can be set/reset by sequence program.

(17) /EFLW

Control mode - positioning: No tracking error (low-active), wire break proof execution (see section 5.4.3)

High level: No tracking error
Low level: A tracking error has occurred, i.e. the distance between the reference and actual positions is too large.

LUST

5 Software functions

(18) BRAKE

Holding brake function:
A holding brake built into the motor (option) offers protection against unwanted movement of the motor shaft when power is cut to the controller. It also offers the possibility in the event of an error to brake the axle down to a standstill and hold it there, even without loop control.

Options ...

Figure 5.19 Setting of brake function

Nine different 'brake type' options (SPD0 to HOLD6) are available for actuation of the brake. They regulate engagement of the brake in case of error and when the control is switched on and off.

For details of which parameters are relevant in the respective brake types to set the functionality refer to the following table.

LUST

Brake types:

Bus	Setting	The brake engages on ...	Parameters used							
			THTDC	TMOFF	TMON	TREF	LCQFA	ERRAC	QSOPC	SELDC
0	SPD_0	Standstill and control off								
1	ERR_1	Standstill and in case of error								
2	ERR_2	Standstill and in case of error. After no more than 400 ms								
3	ERR_3	Error								
4	HOLD	Control off								
5	HOLD1	Standstill or in case of error, THTDC	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
6	HOLD2	Standstill or standstill and in case of error, after no more than 400 ms THTDC	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
7	HOLD3	Control off, error, ENPO off, start off and standstill	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
8	HOLD4	Control off, 400 ms after error, ENPO off, start off and standstill	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark
9	HOLD5	Only logical in speed control: Control off, 400 ms after error, ENPO off, start off and standstill control	\checkmark							
10	HOLD6	Brake remains closed during commutation finding. Control off, 400 ms after error, ENPO off, start off and standstill	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark

Table 5.10 Brake types

Figure 5.20
Speed profile, brake function

Brake type parameters used:

THTDC

TMOFF

TMON

TREF

LCQFA

Overlapping time brake on / control off:
The control is shut off after motor standstill and when a defined time elapses

Timer torque reduction:
The current torque is reduced in linear mode within the specified time to zero

Timer torque build-up:
The torque used in the last movement is stored and increased in linear mode within the specified time from zero.
(Only relevant for HOLD5)

Speed control delay time until reference enable:
The existing speed reference is delayed for the time TREF. After expiry of the timer TMON and after the control start, the torque is increased linearly to the torque reference needed in the last movement

Load torque compensation: Scaling for pre-control of current For acceleration (lifting) or braking (lowering) the active torque is increased (lifting) or reduced (lowering) by the scaling factor.
(Default 0\%, i.e. function deactivated)

QSOPC

SELDC

ERRAC

After a quick stop has been executed, this function (QSOPC $=-2$) allows the brake ramp that is still active to be cancelled and the controller restarted.
The function can be triggered only by activation or deactivation of the start signal or the start bit in bus operation (START).
It is not effective if the quick stop is triggered by the function STOP (bus) or /STOP (terminal)
The setting is effective only for Hold1 to Hold6!

Switches off the power stage if the speed reference $=0$ or the speed actual value $=0$
SELDC = ACTV:
The power stage will be switched off as soon as the speed actual value $=$ 0 and the time THTDC has expired.

SELDC = REFV:
The power stage will be switched off as soon as the speed reference $=0$ and the time THTDC has expired.
The setting is effective only for Hold1 to Hold6!

Switches off the power stage if certain quite specific error reactions occur
ERRAC = ON: (factory setting)
If an error occurs for which the error reaction is set to STOP or LOCKS, the controller switches itself off automatically after the motor has come to a standstill and the time THTDC has expired.

ERRAC = OFF:
Even after the motor has come to a standstill the controller remains active until one of the following conditions is satisfied:

- Acknowledgement of the error message
- The digital input „START" is cancelled (control location term)
- The „START" BIT 0 in the control word is set to LOW (control location option)

If however during the braking process, i.e. when the standstill window has not yet been reached, one of the following conditions is triggered:

- Acknowledgement of the error message
- The digital input „START" is cancelled (control location term)
- The „START" BIT 0 in the control word is set to LOW (control location option)
the power stage will be switched off immediately, irrespective of the setting of the parameter ERRAC.

LUST

5 Software functions

Brake types

SPD_0

The brake engages:

- at standstill
- when control is shut off
(further parameters: none)

Figure 5.21 SPD_0
ERR_1
The brake engages:

- in case of error immediately
- at standstill
(further parameters: none)

Figure $5.22 \quad E R R _1$

ERR_2

The brake engages:

- in case of error at standstill or
- no more than 400 ms after the error occurred (further parameters: none)

Figure 5.23 ERR_2

ERR_3

The brake engages:

- in case of error immediately
(further parameters: none)

Figure 5.24 ERR_3

HOLD
The brake engages:

- when control is shut off
(further parameters: none)

Figure 5.25 HOLD

HOLD1

The brake engages:

- in case of error
- when the control is off at standstill

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]

HOLD2

The brake engages:

- after control off, when standstill reached
- in case of error at standstill or no more than 400 ms after the error occurred.

Figure 5.26 HOLD2

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]

5 Software functions

HOLD3

The brake engages:

- after control off, when standstill reached
- in case of error immediately
- on cancellation of ENPO

Figure 5.27 HOLD3

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]

HOLD4

The brake engages:

- after control off, when standstill reached
- in case of error when standstill window is reached after braking ramp executed, but no more than 400 ms after error occurred - on cancellation of ENPO

Figure 5.28 HOLD4

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]

HOLD5
The brake engages:

- after control off, when standstill reached
- in case of error when standstill window is reached after
braking ramp executed, but no more than 400 ms after error occurred - on cancellation of ENPO

Figure 5.29 HOLD5

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]
Delay time control on/ brake off 865-TMON [ms]
Delay time control active/apply reference 866-TRef [ms]
Scaling for pre-control of current/load torque compensation 878-LCQFA [\%]

HOLD6

The brake engages:

- after control off, when standstill reached
- in case of error when standstill window is reached after braking ramp executed, but no more than 400 ms after error occurred
- on cancellation of ENPO
- brake remains closed during commutation finding

Figure 5.30 HOLD6

Further parameters:
Overlapping time brake on / control off 467-THTDC [ms]
Delay time for torque reduction 867-TMOFF [ms]

Note: \quad The holding brake is not designed as a service brake, i.e. as a matter of principle actuation and release is effected at standstill or in case of error.

Important: In setting HOLD1 and ERR3 the brake engages immediately in case of error (regardless of motor speed). This "breakdown braking" may shorten the service life of the holding brake.
\qquad

5 Software functions

(19) S_RDY

S_RDY is cancelled prior to a control initialization. When the initialization is complete S_{-}RDY is reset.

Device initialized
High level: Device is initialized after power-on, i.e. capable of communication and activation (ENPO and START not required)

Low level: Device not initialized
(20) C_RDY

Device ready
High level: Device is ready, i.e. input ENPO set and no error (START not required)

Low level: Device not ready

(21) SCVAM

Speed threshold reached
Options ...

Figure $5.31 \quad$ Speed threshold

High level: When speed threshold reached
(e.g. 3000 rpm)

Low level: Speed threshold not reached

(22) TCAVM

Torque threshold reached

Output options

Setting digital monitoring function

Torque threshold
$4.099991 \quad \mathrm{Nm}$

$$
\underline{Q k}
$$

Cancel

Figure $5.32 \quad$ Torque threshold

High level: When torque threshold exceeded (e.g. 4.1 Nm)
Low level: Torque threshold not reached

(23) REFOK

Control mode - positioning:
Homing mode completed (see section 4.10.2)
High level: The homing run is completed and the zero has been found.

Low level: No reference point (machine zero) defined
(24) PRRDY

Preset solution positioning, free programmable
End sequence program
High level: The sequence program has not yet started or is already completed and has reached the instruction END.

Low level: Sequence program not at end

(25) CCOUT (see section 5.10 Cam gear)

Activated by cam gear
(26) ... (29) USERx (0-4)

Setting reserved for modified software
(30) T_RDY

Loop control in function, power stage is active, commutation finding completed

High level: Power stage active; commutation completed
Low level: Power stage not active or power stage active and commutation finding being executed.

LUST

5.2.2 Digital outputs, user module UM8140

Digital UM8140

Figure 5.33 Digital Outputs UM8I40 tab

The servocontroller can optionally be equipped with a UM8140 user module (terminal expansion), providing eight additional digital inputs (and four digital outputs).

DM	Meaning	Value range	Unit	Parameter
OEOO	Function selector external output OEDOO	See table 5.9	-	$\begin{gathered} \text { 243_FOEOO } \\ \text { (OUT) } \end{gathered}$
OE01	Function selector external output OEDO1	See table 5.9	-	$\begin{gathered} \hline 244 \text { _FOEO1 } \\ \text { (OUT) } \\ \hline \end{gathered}$
OE02	Function selector external output OEDO2	See table 5.9	-	$\begin{gathered} \text { 245_FOE02 } \\ \text { (OUT) } \end{gathered}$
OE03	Function selector external output OED03	See table 5.9	-	$\begin{gathered} \hline 246 \text { FOEO3 } \\ \text { (_OUT) } \\ \hline \end{gathered}$

Table 5.11 Digital outputs UM8140 - basic settings

Function of external digital outputs, see section 5.2.1 "Digital outputs".

Note: When the option module is not plugged in (present), the functions can be selected by the status always remains Low (0).

LUST

5.2.3 Virtual (digital) outputs

Figure 5.34 Virtual Outputs tab

The servocontroller provides two virtual (digital) outputs, which can be used for event control via CAN bus.

DM	Meaning	Value range	Unit	Parameter
OV00	Function selector virtual output OV00	See table 5.9	-	248 _FOV00 (_OUT)
OV01	Function selector virtual output OVO1	See table 5.9	-	24__FOVO1 (_OUT)

Table 5.12 Virtual outputs - basic settings Functions of virtual outputs, see section 5.2.1 "Digital outputs".

LUST

5 Software functions

5.3 Loop control

Figure $5.35 \quad$ User screen: Loop control
In the "Loop control" screen all loop control settings and refinements are entered.

5.3.1 Loop control software

Note: Synchronous and asynchronous machines can be controlled. Direct drives/linear motors (ironless/iron-core) can be controlled.

The CDD3000 servocontroller can be operated in three control modes:

- Torque control
(TCON)
- Speed control
- Position control (SCON) (PCON)

Note: \quad The control mode is set by selection of a preset solution, see section 4.1

It has three control loops which are overlaid onto each other (see diagram). Depending on the preset solution, the respective underlaid control loops are active, e.g. in speed control only the speed and torque controllers. The speed reference (7) is then delivered directly by the reference input, the position controller (E) is isolated and without function.

The pre-control structure for speed and torque is not shown!
A)Modulator and power stage
3)Current recording
B)Processing of actual values
4)Actual torque
C)Torque controller
5)Torque reference
D)Speed controller
6)Actual speed
E)Position controller 7)Speed reference
1)Voltage recording
8)Actual position
2)Current recording
9)Position reference

Figure 5.36 Control structure
The parameters of the control loop are located in the Parameter Editor in the "Control setting" subject area (_CTRL). The torque and speed controllers are executed as Pi-controllers, the position controller as a Pcontroller. The gain (P-component) and the lag time (l-component) of the individual controllers is programmable in the respective subject area.

In the user screen the settings are entered on the "Loop control" and "Extended" tabs.

5 Software functions

5.3.2 Speed control / Position control

Loop control..

Control x

Adapt the external inertia

Inertia known ?	C Yes
	CNo

Speed controller gain SCGFA
$\underline{0.01} \mathrm{~kg} \mathrm{~mm}$
100.00

Adapt stiffness of power train

By setting the stiffness the adjustments of speed and positioning control will be calculated automatically.

Extended setting:

Manual or extended adjustment of control circuits can be made with:

Adjustment of power stage:

```
Power stage..
```

$$
\underline{Q K}
$$

\square Cancel Apply

Figure 5.37 Control tab

DM	Meaning	Value range	Unit	Parameter
SCGFA	Scaling factor: PI controller gain Speed controller	$0-999,95$	$\%$	811 _SCGFA (_CTRL)
SCDSC	Dimensioning Speed controller, desired dynamics	$0-200$	$\%$	46 _SCDSC (SSCD)
SCJ	Total moment of inertia of system with motor	$0-1000$	$\mathrm{~kg} / \mathrm{m}^{2}$	817 817_SC] (_SCD)

Table 5.13 Control - basic settings

5 Software functions

Setting the control loops

Adaptation to the external moment of inertia

It may be necessary, depending on application:

- to enter the known moment of inertia directly, or
- to adapt the speed controller gain (SCGFA in \%).

Adaptation to the stiffness of the drive train

This can be done in two ways: Either the control loop parameters can be set directly (see "Extended setting") or the adjustment can be made using a wizard.
In the assistant the stiffness can be specified in percent, and by way of the "Start adaptation..." button the settings are calculated and entered. A setting $<100 \%$ produces a "soft" controller setup (e.g. for a toothed belt drive) and a setting $>100 \%$ means a "hard" controller setup for a hard mechanism (with low play and elasticity).

Note: \quad The torque controller is set by attuning the motor data see section 5.5 "Motor and encoder") optimally to the respective motor.
You can make a manual or advanced setting of the control loops using the Extended ... button.

Power stage setting

Figure $5.38 \quad$ Power Stage tab

DM	Meaning	Value range	Unit	Parameter
Switching frequency	Switching frequency of power stage / modulator	$4 / 8 / 16$	kHz	690_PMFS (_CONF)

Table 5.14
Table 5.15 Power stage - basic settings

Note: The higher the switching frequency,

- the lower will be the output power of the servocontroller (derating of output current)
- the smoother the motor runs at high speeds
- the less noise there will be

Figure 5.39 Control - Extended tab

In this screen the speed and position controllers can be adapted to the application by setting the controller and filter parameters directly. Basic control engineering skills are essential for this.

LUST

DM	Meaning	Value range	Unit	Parameter
Total inertia	Moment of inertia complete, i.e. of the clutch, the gearing where appropriate, the system and the motor.	0-1000	kgm^{2}	$\begin{aligned} & \hline 817 \text { SC } \\ & (\text { SCD) } \end{aligned}$
Actual speed filter	Actual value filter to filter out any disturbance to the feedback. The less the ECTF, the more rigid will be the axle.	0-32	ms	$\begin{gathered} \text { 818_ECTF } \\ \text { (_CTRL) } \\ \hline \end{gathered}$
Speed controller gain	Adaptation of the P-gain of the speed controller. The higher the gain, the more rigid will be the axle.	$\begin{gathered} 0- \\ 100000000 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Nm} \\ & \mathrm{~min} \end{aligned}$	$\begin{aligned} & \text { 810_SCG } \\ & \text { (_CTRL) } \end{aligned}$
Speed controller lag time	Adaptation of the I-component of the speed controller, with the lag time SCTLG. The less the SCTLG, the more rigid will be the axle.	1-2000	ms	$\begin{gathered} \text { 812_SCTLG } \\ \text { (_CTRL) } \end{gathered}$
Reduction of SCG at low speeds	Weighting of the speed controller gain reduction in percent	0-100	\%	$\begin{gathered} \text { 837_SCGFO } \\ \text { (_CTRL) } \end{gathered}$
prevents „buzzing" or cogging (especially effective for TTL encoders).	Weighting of the speed controller gain reduction in rpm	0-200	rpm	$\begin{gathered} \text { 839_SCGSO } \\ \text { (CTRL) } \end{gathered}$
Position controller gain	Adaptation of the P-gain of the position controller. The higher PCG is set, the more rigid will be the drive and the fewer tracking errors there will be during positioning. If PCG is set too high, it will cause overshoot at the target position or even control instabilities.	1-32000	rpm	$\begin{aligned} & \text { 460_PCG } \\ & \text { (_CTRL) } \end{aligned}$

Table 5.16 Extended control - basic settings

Note: All parameters of the extended setup can be edited online (with the power stage active).
A detailed picture of the loop control structure with pre-control can be viewed by clicking the Zoom button.

Speed controller gain reduction at low speeds

Pre-control

Figure $5.40 \quad$ Pre-control

The object of pre-control is to compensate for the time constants of the speed and torque control loops.

To this end, the CDD3000 calculates the pre-control signal for the speed by differentation of the position reference and the pre-control signal for the acceleration by a second differentation. The torque is calculated by multiplying the acceleration by the moment of inertia.

For the pre-control to work optimally, it is predictive. This means that the torque controller receives its reference before the speed controller, and the speed controller receives its reference before the position controller.

DM	Meaning	Value range	Unit	Parameter
Time of prediction	Time shift (in $250 \mu \mathrm{sec}$ increments) of torque reference relative to position controller. Default: 1-2	0-20	$\begin{gathered} 250 \\ \mu \mathrm{sec} \end{gathered}$	459_PPRET (CTRL)
Filter of speed pre-control value	The speed pre-control value filter prevents the position controller and speed controller from working against each other. Default: SCTF $=2 \times$ ECTF	0-1000	ms	$\begin{gathered} \text { 816_SCTF } \\ \text { (CTRL) } \end{gathered}$
Factor speed precontrol value	Level of speed pre-control Default: 100\%	0-999,95	\%	463 NPREF (CTRL)
Factor torque pre-control value	Level of torque pre-control (can be checked with digital scope): Actual torque / torque: Partial reference 3 Default: 100\%	0-999,95	\%	464_MPREF (CTRL)
Value of friction torque	Pre-control for friction torque	0-500	Nm	$\begin{gathered} 897 \text { _SCMRC } \\ \text { (SCD) } \\ \hline \end{gathered}$

Table 5.17
Setting pre-control

Note: \quad The level of the pre-control values depends on the preset moment of inertia (see: "Adaptation to the external moment of inertia").
The smoothing time also affects the pre-control. At smoothing times longer than 30 ms the pre-control is inactive.

Current controller

Figure $5.41 \quad$ Current controller

In this screen the current controller parameters can be set directly. Basic control engineering skills are essential for this.

DM	Meaning	Value range	Unit	Parameter
Gain	Adaptation of the P-gain of the current controller.	$0-426$	V/A	800 TCG (_CTRL)
Lag time	Adaptation of the I-component of the current controller, with the lag time	$0-50$	ms	802 _TCTLG (_CTRL)

Table 5.18 Setting the current controller

Current controller tuning:

Here a step response can be recorded directly (precondition: ENPO = High). The recommended stepwidth is the rated current of the motor. Clicking the Apply d-current test signal button opens an image directly with the digital scope.

Note: \quad For this test the CDD3000 must be in a speed-controlled operation mode. Otherwise the motor may move.
The step is made in 2 stages. The first, smaller, step aligns the motor shaft; the second step is used for optimization. The level of the second step should not be selected too large, to prevent the voltage reference from going to the limit (small signal response required). The scope is started automatically. Aim of optimization: The current controller acting time should be $<2 \mathrm{~ms}$ and the overshoot $<10 \%$.
Precondition: Input ENPO is active

LUST

5 Software functions

5.4 Limit values

Figure 5.42 User screen: Limit values and tolerances

In the "Limit values" screen the application-specific limit values and tolerances, such as the maximum speed, can be set.

LUST

5.4.1 Limit values

Limit values

Limit values

Figure 5.43 Limit Values tab

LUST

5 Software functions

Table 5.19 Limit values - basic settings

5.4.2 Tolerances

Limit values

Tolerances

Figure 5.44 Tolerances tab

DM	Meaning	Value range	Unit	Parameter
Standstill window	Window for the "Speed=0" message (at the digital output/ field bus): When current is applied to the motor and the actual speed is less than the "standstill window" parameter, a 24 V level is connected to the "Standstill" output. With the message "Motor rotating anti-clockwise" (ROT_L) the motor must be outside the standstill window and be rotating anticlockwise. The same applies to the "Motor rotating clockwise" message (ROT_R).	0,02-20	rpm	$\begin{gathered} \text { 411_SPD_0 } \\ \text { (LIMM) }^{2} \end{gathered}$
Reference window	Message box: "Reference reached" (at the digital output/ field bus). If the difference between the reference and actual speeds (or reference and actual torque in torque control mode) is less than the "reference window" parameter, a 24 V level is connected to the "reference reached" output.	$\begin{gathered} 0-1000 \\ 0-5 \end{gathered}$	$\begin{gathered} \mathrm{rpm} / \\ \mathrm{Nm} \end{gathered}$	$\begin{gathered} \text { 232_REF_R } \\ \text { (_OUT) } \end{gathered}$
Position window	Message box: "Position reached" in the sequence program	1-65535	Increments / Customer unit	$\begin{gathered} \hline 720 \text { POWIN } \\ \text { (_PBAS) } \\ \hline \end{gathered}$

Table $5.20 \quad$ Tolerances - basic settings

Standstill window
Message box: "Speed=0"

a Standstill window
Figure 5.45 Standstill window

Reference window
Message box: "Reference reached"

a Reference window
b Actual speed
Figure 5.46 Reference window

LUST

5.4.3 Tracking error

Limit values

Tracking error

Figure 5.47 Tracking Error tab

DM	Meaning	Value range	Unit	Parameter
Speed tracking error	If the difference between the reference and actual speeds is greater than this value, a 0 V level is connected to the "/Tracking error" output and the following response is triggered:	0-12000	rpm	$\begin{gathered} \text { 899_SDIF } \\ \text { (_LIM) } \end{gathered}$
Position tracking error	If the difference between the reference and actual positions is greater than this value, a 0 V level is connected to the "/Tracking error" output and the following response is triggered:	$\begin{aligned} & 2.147 .483 .648 \\ & (=32.768 \text { rev. }) \end{aligned}$	Increm ents	$\begin{aligned} & \text { 462_PDMX } \\ & \text { (_CTRL) } \end{aligned}$
Action at exceeding tracking error	0 = Only warning 1 = Signal error and disable power stage 2 = Signal error, quick-stop and wait for cancellation of start signal	0 to 2	-	$\begin{gathered} \text { 539_R-FLW } \\ \text { (ERR) } \end{gathered}$

Table 5.21 Tracking error - basic settings

Note: \quad In speed tracking error monitoring for 0 rpm , monitoring is deactivated (logical when recording step responses).

5.4.4 Stop ramps

Limit values

Figure 5.48 Stop Ramps tab

DM	Meaning	Value range	Unit	Parameter
Stop ramp	The stop ramp is activated when the start signal is removed and in case of error shutdown (depending on response, see ERROR/ WARNING). Setting 0 means braking at the preset max. torque.	0 to 65536	rpm/s	$\begin{aligned} & \text { 496_STOPR } \\ & \text { (_SRAM) } \end{aligned}$
Transition	Quick stop => Control enabled (only possible in speed control) (see also page 5-39)	$\begin{aligned} & -1=\text { Disable } \\ & -2=\text { Enable } \end{aligned}$	1	$\begin{gathered} \text { 685_OSOPC } \\ \text { (CONF) } \end{gathered}$
Activation of „Disabling the power stage" (advantageous for hoist applications)	ACTV: Power stage is disabled if the actual speed $=0$ REFV: Power stage is disabled if the refe- rence speed $=0$ (see also page 5-39)	$\begin{gathered} \hline \text {-ACTV } \\ \text { REFV } \end{gathered}$	1	$\begin{gathered} 497 \text { SELDC } \\ \text { (OUT) } \end{gathered}$

Table 5.22 Stop ramp - basic setting

5.5 Motor and encoder

Figure 5.49
User screen: Motor and encoder setup

In the "Motor and encoder setup" screen the matching motor data set can be loaded and the encoder type set.

Procedure for setting up a motor:

- Load motor data
- Set motor protection (temperature monitoring and $\mathrm{I}^{2} \mathrm{xt}$ protection)
- Set encoder (resolver/optical encoder)
- If necessary, set commutation finding (synchronous motor/linear motor without absolute encoder).

For more information on the motor database refer to the CDD3000 Operation Manual.

LUST

Important: Parameters of the "Motor and encoder" subject area may only be changed by qualified personnel. An incorrect setting may cause the motor to start up unintentionally ("run away").

5.5.1 Motor

Motor and encoder
Motor

Figure 5.50 Motor tab
A database is available containing the settings for all LUST servomotors. Using the correct motor data set ensures

- that the electrical parameters of the motor are correctly set,
- that the motor protection ("Motor protection" tab) is correctly set and
- that the control circuits of the drive are preset.

The torque controller is set up optimally, so no further adjustments are necessary.

Note: \quad The setting of the speed controller is based on the assumption that the machine moment of inertia reduced onto the motor shaft is equal to the motor moment of inertia. The position controller is designed for a flexible coupling of the mechanism.

Changing motor in the DriveManager

A different motor can be loaded from the database of the DriveMANAGER.

Figure 5.51 Changing motor

Click on the "Other motor" button on the "Motor" tab to select the right motor from your installed database. The motor type is indicated on its name plate.

If the motor data set is supplied on a data carrier (floppy disk, CD-ROM), it can be loaded directly by clicking on the "Change directory" button.

Note: If you are using a motor which is not in the database, "LUST Antriebstechnik GmbH" corporation offers custom data sets as a special service. Please consult your project engineer on this.

LUST

5.5.2 Motor protection

Motor and encoder

Motor protection

Figure 5.52 Motor Protection tab

In this screen the matching motor temperature sensor (PTC) and temperature-dependent switches and an $I^{2} x t$ monitor can be set to protect the motor.

DM	Meaning	Value range	Unit	Parameter	
Temperature monitoring	Type of temperature sensor	see table 5.20		$\begin{gathered} \hline \text { 330_MOPTC } \\ \text { (_MOT) } \\ \hline \end{gathered}$	
Temperature monitoring connected via:	Selection of terminal: X3 = PTC terminals X6 = D-Sub connector, resolver	$\begin{aligned} & \text { X3 (0) } \\ & \text { X6 (1) } \end{aligned}$		$\begin{gathered} \text { 337_MOPC } \\ \text { (_MOT) } \end{gathered}$	
Maximum temperature	Maximum temperature of the motor in KTY84 evaluation through to shutdown E-OTM	10-250	${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { 334_MOTMX } \\ \text { (MOT) } \end{gathered}$	
Short-circuit control	Short-circuit monitoring on PTC input	$\begin{aligned} & \hline \text { OFF (0) } \\ & \text { ON (1) } \end{aligned}$		$\begin{gathered} \hline 329 \text { PTCSC } \\ \text { (_MOT) } \end{gathered}$	
\|x	xt monitoring	The ${ }^{12}$ xt monitor protects the motor over the entire speed adjustment range. The value is only available for motors from the motor database.	0-237262	$\mathrm{A}^{2} \mathrm{sec}$.	$\begin{aligned} & 854 \text { MOI2T } \\ & \text { (_MOT) } \end{aligned}$

Table 5.23 Motor protection - basic settings
The servocontroller shuts off the motor with an error message:

- E-OTM, if the motor temperature exceeds a programmable limit value (limit value programmable in KTY 84).
- E-OLM if the up-integrated current/time value exceeds the required motor-dependent limit value for a specific time. This function replaces a motor circuit-breaker.

Temperature monitoring settings

Bus	KP/DM	Function
0	OFF	Monitoring off
1	KTY	Linear PTC (KTY 84, yellow)
2	PTC	Threshold PTC (to DIN 44082)
3	TSS	Klixon (temperature switch as break contact)

Table 5.24 Temperature monitoring settings

Note: \quad The linear PTC evaluation is adapted to a KTY84 with yellow tolerance marking, i.e. $100^{\circ} \mathrm{C}$ is within the tolerance band 970 to 1030Ω.
In KTY84 evaluation the current motor temperature is displayed in the "Actual values - Temperatures" screen. The shutdown temperature is adjustable from $10-250^{\circ} \mathrm{C}$. The resistance of the PTC at the nominal response temperatures has a value >3 K Ω (cf. DIN 41081/41082).

IxIxT monitor settings:

If the effective value of the current exceeds the value iMOCNM*root2 (parameter 158-MOCNM), up-integration is performed with ieff ${ }^{2}$. If the current pointer length falls below the value iMOCNM*root2, downintegration is performed with (iMOCNM - ieff) ${ }^{2}$ until the integrator reaches the value zero. To suppress the current spikes occurring due to normal current ripple, ieff ${ }^{2}$ is filtered with a P-T1 element.

The setting " 0 " for parameter 854-MOI2T deactivates the $\mathrm{I}^{2} \mathrm{xt}$ monitoring.

Warning threshold for the $I^{\mathbf{2}} \mathbf{x}$ t monitoring

Motor protection:

Parameter 338 WLITM = Warning threshold for the $\mathrm{I}^{2} \mathrm{x}$ t monitoring as a percentage of the shut-down limit (unit in [\%])

Device protection:

Parameter 339 WLITD = Warning threshold for the $\mathrm{I}^{2} \times \mathrm{t}$ monitoring as a percentage of the shut-down limit (unit in [\%])

Reaching the warning threshold is indicated by the function selectors of flags 75-79 (see Imotion program).

Note: \quad The values of the $1^{2} \mathrm{t}$ monitor can also be recorded with the digital scope:
Shut-off limit (effective value):
Motor protection: Max. value of I2t integrator
(corresponding to parameter 854-MOI2T)
Integrator value (effective value):
Motor protection: I2t integrator actual value

The value MOI2T is calculated from IdO (effective value of standstill current) and the overload factor A , and the time T , as per:

MOI2T $=\left(\mathrm{A}^{*} \text { Ido }\right)^{2}$ * T

5 Software functions

5.5.3 Encoder

Encoder

Single-encoder system:

Figure 5.54 Encoder configuration

The rotary encoder connected to the motor is set up on the "Encoder" tab. Resolvers are designated by the parameter $R x$, encoders by the parameter Gx. The encoder used is entered on the motor name plate.

DM	Meaning	Value range	Unit	Parameter
Encoder	Assistance parameter for setting the encoder type	see table 5.22	1	430_ECTYP (_ENC)
Automatic correction of track signal	OFF (0) = off ON (1) = correction with stored values Adapt (2) = correction (online) active	$0-2$	1	675_ECCON (ENC)
Automatic encoder offset detection	The encoder offset can be automatically calculated in two ways (absolute encoder only): By default with freely alignable shaft and for braked direct drives. Precondition: Input ENPO set			

Table 5.25

Table 5.26 Encoder - basic setting

Note: To set the lines per revolution:
The factory default setting of the lines per revolution for encoder G1 is 2048. To set any desired lines per revolution in the range 1-8190 the encoder is configured as "USER - userdefined".

Automatic correction of track signal

Both resolver and $\mathrm{Sin} /$ Cos incremental encoders exhibit systematic errors which are reflected in the measured position and the speed calculated from it. Dominant errors of the encoders in this context are gain and phase errors, as well as offset components of the track signals.

To this end, LUST developed Gain Phase Offset Correction (GPOC). This patented procedure weights the amplitude of the complex pointer described by the track signals by special correlation methods. The dominant errors can thereby be determined very precisely, with no interference from other encoder errors, and then corrected.

System balancing

For system balancing the following procedure is suggested:

- Run the motor at constant speed (e.g. with control window in DRIVEMANAGER) / for resolvers approx. 1000 to 3000 rpm; for optical encoders approx. 1 to 5 rpm.
- Switch to ADAPT and wait about 1-3 minutes for the compensation algorithms to reach their steady state.
- Switch to ON to enable the calculated values to be used.
- Apply setting (and save secure against mains power failure).

Note: Checking performance possible using digital scope: Recording of actual speeds/track signals before and after GPOC.

Encoder types

Bus	Type	Designation
0	User	Encoder type not corresponding to Rx and Gx
1	R1	Resolver 1 pole pair
2	R2	Resolver 2 pole pairs
3	R8	Resolver 3 pole pairs
4	G1	Sin/Cos 2048 lines zero pulse
5	G2	Sin/Cos 2048 lines single-turn SSi 25 bits
6	G3	Sin/Cos 2048 lines multi-turn SSi 25 bits
7	G4	Sin/Cos 2048 lines single-turn SSi 11 bits
8	G5	Sin/Cos 2048 lines single-turn SSi 13 bits
9	G6	Sin/Cos 1024 lines single- or multi-turn Hiperface
10	G7	Sin/Cos 512 lines single- or multi-turn Hiperface
11	G8	TL encoder 1024 lines
12	G9	Sin/Cos encoder with special Hiperface protocol
13	G10	Sin/Cos, single or multiturn EnDat 2.1

Table 5.27
Encoder types

Important: Encoder types G1 and G8 can only be used with a synchronous motor in conjunction with the "Find commutation" function, as for loop-controlled operation of a synchronous motor the rotor position on activation of control must be known. If this rule is ignored the motor may "race". In conjunction with asynchronous motors this restriction does not apply.

Note: \quad Note on connection of a TTL encoder:
In drive systems with one encoder, the TTL encoder preset as a G8 type is connected to connector $\mathbf{X} 5$. This results in the restriction that the "Encoder simulation" and "Master encoder" functions are not available simultaneously. Connecting a TTL encoder to connector X5 requires differential signals of the encoder according to RS422. In drive systems with two encoders, the encoder for commutation finding and speed control is always the resolver. One of the Gx types is selected as the master encoder. This master encoder is always connected to connector X7, even in the case of a TTL encoder.

Options (USER setting)

If the encoder type differs from the possible presets ($R x$ to $G x$), it can be set manually.

- Option encoder		x
Sefting of userdefined encoder		
Encoder op:		
G1 [1] = Sine/Cotrie Ercooder		∇
Encoder fine rumber	2048	
Resolver - psie of poles	1	
Encoder offist	0000 H	
Use Slat $\times 6$ es	ON (0) = Resoiver	\cdots
Qk	Canced	Anply

Figure 5.55 Encoder options

Options...

DM	Meaning	Value range	Unit	Parameter
Encoder type	Freely selectable encoder type in case of deviation from preset	see table 5.24	-	431_CFENC (ENC)
Encoder line number	Lines per revolution of the connected optical encoder	$1-65535$	Lines per revolution	432_ECLNC (_ENC)
Resolver - pair of poles	Number of pole pairs of the connected resolver (only effective with setting R)	$1-7$	Pole pairs	433_ECNPP (_ENC)
Encoder offset	Correction value for the mechanical installation position of the encoder	$0-$ FFFF	Hex	434_ECOFF (ENC)
Use slot X6 as	For Hall sender evaluation on the resolver input the excitation can be shut off.	OFF (0) Hall sender ON (1)Resolver	1	435_RESON (_SYS)

Table 5.28 Encoder options - basic settings

Bus	Type	Designation
0	R	Resolver
1	G1	Sine/cosine encoder
2	G2	Single-turn absolute value encoder, 25 bits SSI interface
3	G3	Multi-turn absolute value encoder, 25 bits SSI interface
4	G4	Single-turn absolute value encoder, 11 bits SSI interface
5	G5	Single-turn absolute value encoder, 13 bits SSI interface
6	G6	Single/multi-turn/absolute value encoder, Hiperface
7	G7	Single/multi-turn/absolute value encoder, Hiperface
8	G8	TTL encoder
9	G9	TR encoder with reduced Hiperface protocol
10	G10	Sin/cos, single or multiturn EnDat 2.1

Table 5.29
Table 5.30 Encoder type user-defined

Electronic nameplate (G7 encoder)

When the drive controller is switched on a check of the motor type is performed (parameter MOENP = 1-254). If a variation from the default data is found, an error message is triggered. In this case the nameplate must be read again.

Setting:

Parameter MOENP $=0$
Parameter CFENC = G7
If MOENP $=255$ no comparison of the motor type is performed.

Important: When the electronic nameplate is read again, a comparison is performed between the customer's setting and the factory setting data.

Encoder type (10) EnDat 2.1

Function:

Support of sin-cos encoders with EnDat 2.1 format
Setting:
431 CFENC encoder type = ED21
450 CF2EC encoder type for speed and position control = ED21
Screen "Motor and encoder"
[user-defined] / [options]

Note: The CDD3000 can evaluate optical encoders with any number of lines per motor revolution between 1 and 65535.

Dual-encoder system:

The CDD3000 servocontroller can evaluate two encoders simultaneously (one resolver and one optical encoder).

This enables a "higher-level position control" to be effected, meaning an optical encoder can be attached directly to the process to compensate for mechanical inadequacies (slack/elongation...).

For this there are two setting options.
Option A:
The resolver is responsible for commutation and speed control, and the optical encoder is only used for position control.

Option B:

The resolver is only responsible for commutation and the speed and position control are implemented with the optical encoder.

•				
DM	Meaning	Value range	Unit	Parameter
Resolver - pair of poles	Number of pole pairs of the connected resolver (only effective with setting Rx)	$1-7$	Pole pairs	433_ECNPP (ENC)
Offset Encoder	Correction value for the mechanical installation position of the encoder	0 -FFFF	Hex	434_ECOFF (ENC)
Encoder type	Optical encoder type for position control and, where appropriate, speed control	see table 5.24		450_CF2EC (ENC)
Encoder line number	Lines per motor revolution of the connected optical encoder	1 -65535	Lines per revolution	432_ECLNC (ENC)

Table 5.31
Table 5.32 Basic setting - two encoders

Note: \quad Note: Changes to the encoder configurations can only be made offline. The system must then be re-initialized. Please note the information regarding standardization of the units of the quantities in position-controlled mode in section 4.10

Note: Wire break detection using two encoders

In the event of a wire breakage on one of the two encoders an error shutdown will be performed.
No distinction is made as to which encoder has suffered the wire breakage!

Note: If you want to forward the position information to the higherlevel controller at a higher resolution, select the „1-to-1" setting. You can then configure the selected lines per revolution in 2^{n} increments from 32 to 65536 (resolver: px 32 to px 65536).

5.5.4 Find commutation

Find cormulation

If a synchronous motor is connected to an encoder which has no absolute link to the pole pitch of the motor, after powering up the controller a commutation finding must be performed.

Commutation finding is performed in operation one time after switching on the mains voltage, at the first start enable. It can be forced during commissioning by altering a parameter which causes a full control initialization (e.g. changing find commutation parameters/control mode, etc.).

For this, the encoder G1 (Sine/Cosine encoder without position reference) or USER (user-defined) is set on the Encoder tab.

Encoder vp:
G1 [1] - Sine/Cotine Encoder

Then on the Find Commutation tab the method to be applied and its parameters can be set.

A total of five methods are available:

1. Find commutation IENCC (1) via motion

An easily parameterized method in which, however the rotor moves by as much as half a revolution, or half a pole pitch unit (where $p=1$).
2. Find commutation LHMES (2) with braked machine

The machine must be blocked by a suitable brake during commutation finding. The occurring torques and forces may reach the machine's rated torque/rated force.
3. Not implemented
4. Find commutation IECON (4) with minimized movement

Here, too the rotor must be able to move, though appropriate parametersetting can reduce the rotor movement to just a few degrees per mm .
5. Find commutation HALL1 (5) with Hall senders 120 degrees

Hall sender evaluation of two $\mathbf{1 2 0}$ degrees offset sensors: The sensors deliver analog output signals which are read-in on the resolver input.
6. Find commutation HALL2 (6) with Hall senders 90 degrees

Hall sender evaluation of two 90 degrees offset sensors: The sensors deliver analog output signals which are read-in on the resolver input.

Important: Parameters of the "Find commutation" subject area may only be changed by qualified personnel. If they are set incorrectly the motor may start up in an uncontrolled manner.

Note: Activation of speed tracking error monitoring is recommended (see section 5.4.3). This monitor reliably prevents the motor from racing (e.g. if the commutation finding is inadequately configured/executed).

Figure 5.56 Find Commutation tab
The settings are made in the combo box according to the chosen method.

Note: The preset current ratings are amplitude variables (peak values).
As a general rule the commutation finding process should be recorded with the digital scope of the DriveManager, in order to obtain a precise picture of the process.
For more information and help on using the Find
Commutation function consult your project engineer.

DM	Meaning	Value range	Unit	Parameter
Find commutation	Methods of commutation finding	$\begin{gathered} \text { OFF (0) } \\ \text { HALL2 (6) } \end{gathered}$		$\begin{gathered} \text { 886_IESEL } \\ \text { (_CTRL) } \end{gathered}$
Interval 0/1: Duration [0]	Find commutation with (min.) rotor movement: Duration of 2nd interval	65535	ms	884_IENCT [CTRL)
Duration [1]	Duration of 1st interval	see note 1.	ms	884 IENCT [_CTRL]
Amperage [0]	Amperage (current rating) of 2nd interval	0-300	A	885 IENCC [CTRL]
Amperage [1]	Amperage (current rating) of 1st interval	0-300	A	$\begin{gathered} 885 \text { IENCC } \\ \text { [CTRL] } \end{gathered}$
Interval 2/4:	Find commutation with braked machine:			
Duration [2]	Test signal period	see note 2.	ms	$\begin{aligned} & \text { 884_IENCT } \\ & \text { [_CTRL) } \end{aligned}$
Duration [4]	Number of oscillations for 2nd measurement	see note 3.	ms	884_IENCT [_C̄TRL]
Amperage [2]	Test signal amplitude	0-300	A	$\begin{gathered} 885 \text { IENCC } \\ {[\text { CTRL] }} \end{gathered}$
Amperage [4]	Offset for 2nd measurement	0-300	A	$\begin{gathered} 885 \text { IENCC } \\ \text { [CTRL] } \end{gathered}$
Gain commutation controller	Parameter to optimize movement (see description of method)	0-999,95	\%	$\begin{gathered} \text { 807_KCGFA } \\ \text { (_CTRL) } \\ \hline \end{gathered}$

Table 5.33 Find commutation - basic setting

Note: 1. (see interval duration)
The total duration of both intervals must not exceed 8100 ms .
2. The period should be between $2 \mathrm{~ms}(=>500 \mathrm{~Hz})$ and 10 ms ($=>100 \mathrm{~Hz}$).
3. The number of oscillations must be in the range $5 \ldots . .50$.

Methods of commutation finding

OFF (0) = off
There is no commutation finding.

Find commutation IENCC (1) via motion

Principal of method:
In this method a direct current is applied to the motor in two orthogonal directions. This aligns the rotor (maximum 0.5 magnetic pitch).

Area of application:
The encoder offset (commutation angle) can be set without major parameter configuration.

Precondition:
It is not possible to set a time above 8 s . If the rotor is then not yet at rest, a different method must be selected.

Important: The motor may be moved jerkily during commutation finding. The coupled mechanism must be designed to cope with this.

Important: If the axle is blocked, i.e. the rotor is unable to align itself freely, the methods will not work properly. As a result, the commutation angle will be incorrectly defined and the motor may run down in an uncontrolled manner.

Parameter setting:

Parameters for two intervals in which a direct current is applied are set in terms of duration and current rating. The parameters are set on the "Find commutation" tab from the "Motor and encoder" menu.

Figure 5.57 Find Commutation tab - via motion
First the interval configured in field [1] is applied, then the one set in field [0]. The durations should be selected such that the rotor is at rest at the end of the second interval (field [0]). The recommended amperage is the motor rated current.

Note: Inexperienced users should always select the motor rated current (amplitude) as the amperage and the maximum time of $2 \times 4 \mathrm{~s}$ as the duration.

Checking the parameter settings:

As a check, the commutation process can be recorded using the DriveManager. For this the current variables on the Alpha and Beta axis and the electrical rotor/stator angle are plotted.

In the plot shown the rotor is at rest at the end of each of the two periods at $\mathrm{t}=0.5 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$. respectively

Find commutation LHMES (2) with braked machine

This method is suitable for commutation finding with a braked rotor.
Principal of method:
Saturation effects in the stator inductance are evaluated. For this two test signals are applied. The first determines the position of the rotor axle, the second its orientation.

Area of application:
To determine the rotor angle with a braked rotor or in motors with very high inertia.

Precondition:
The rotor must be braked effectively, so that the motor does not move even when the rated current is applied.

Precondition:
The stator of the machine must be iron-core.
Parameter setting:
The test signals are a sinusoidal current which can be defined in terms of amplitude and period duration, and for the second measurement also in terms of direct component and number of periods. These settings are made on the "Find commutation" tab from the "Motor and encoder" menu.

In field 2 the period durations (e.g. $3 \mathrm{~ms}=>333 \mathrm{~Hz}$ test signal frequency) and the amplitude (e.g. 1A) are entered.

The number of periods for the second measurement can be set in field 4 under Duration; the direct component is entered under Amperage.

Figure 5.58 Find Commutation tab - with braked machine
Setting parameters for a test signal: Frequency 333 Hz ; amplitude 1A; duration 50 periods; direct component 3.1 A

With a test signal frequency of 333 Hz and an amplitude of an order of one quarter of the rated current or 1 A , evaluation of 50 oscillations and a direct component in the amount of the rated current, good results are produced in most cases.

Checking the parameter settings:
The inductances determined are stored in field parameter 835_SC_V2 (_SCD).

The field parameter [12] corresponds to the mean inductance, and should match the stator inductance specified on the data sheet.

Parameters [3] and [4] specify the inductance under the influence of saturation, and should be 5% to 10% apart. If these values are too close together, the controller will abort with the error message E-ENC 137. In this case the current must be increased in field 4.

Find commutation IECON (4) with minimized movement

Please consult us if you wish to use this method of minimizing the alignment movement.

Important: The speed controller must be preset. If the speed controller has not yet been set up, a different commutation method should first be selected, such as with movement, IENCC (1).

Note: \quad The default setting for interval 1 is 1000 ms and rated current (amplitude) of the motor.
The default setting for interval 0 is 2000 ms and twice the rated current (amplitude).
The default setting for the PI controller: commutation controller gain is 50%.

Find commutation HALL1 (5) with Hall senders

Hall sender evaluation of two $\mathbf{1 2 0}$ degrees offset sensors:
The sensors deliver analog output signals which are read-in on the resolver input (X6). Then the commutation angle is determined from the two track signals by means of an arc-tangent operation.

The accuracy of the calculated encoder offset depends on the properties of the evaluated magnetic field, the quality of the sensor signals and the downstream evaluation electronics.

Note: \quad The resolver excitation must be shut off (see section 5.5.3). The cabling of the Hall sender must be checked to ensure that the direction of movement/rotation matches that of the second encoder system and that of the motor. This can be checked with the digital scope in the DM: Resolver track A/B (CFENC must be set to R1.)
The offset of the encoder (Hall sender), i.e. the mechanical correction value of the fitting position, must be determined one time.

Find commutation HALL2 (6) with Hall senders
Hall sender evaluation of two 90 degrees offset sensors: Otherwise treated as HALL1 (5).
5.5.5 Linear motors

On the "Linear motor" tab the motor data can be calculated from the rating plate/data sheet data.

Figure $5.59 \quad$ Linear Motor tab

The "Calculate motor data" screen translates the data sheet data of the linear motor into rotational quantities.

Figure $5.60 \quad$ Calculation of motor data

Scaling section: If the lines per revolution of the encoder or the maximum velocity is problematic, one pole pair may correspond to multiple revolutions (MONPP $\neq 1$).

Note: For details of the further procedure in creating data sets for linear motors please consult your project engineer.

LUST

5 Software functions

5.6 Actual values

Figure $5.61 \quad$ User screen: Actual values

In the "Actual values" screen all the values necessary for diagnosis and monitoring can be called up.

LUST

5.6.1 Temperatures

Actual values ..

Temperatures

Figure 5.62 Temperatures tab

DM	Meaning	Value range	Unit	Parameter
Heat sink	Current heat sink temperature, measured in module of power stage. Overheating shut-off (E-OTM) at $85^{\circ} \mathrm{C}$.	$0-150,00$	${ }^{\circ} \mathrm{C}$	427 TEMP (_VAL)
Interior	Current interior temperature, measured on the control pcb.	$0-150,00$	${ }^{\circ} \mathrm{C}$	425 DTEMP (_VAL)
Motor	Current motor temperature, measured in the motor winding (only with KTY $84 / y e l l o w)$.	$0-250,00$	${ }^{\circ} \mathrm{C}$	407 _MTEMP (_VAL)

Table 5.34 Temperatures - basic settings

Note: The service life of the electronic components (electrolytic capacitor, power stage transistors, ...) will be reduced considerably in continuous operation at an interior temperature above $65^{\circ} \mathrm{C}$.

5.6.2 Device data

Figure 5.63 Device tab

DM	Meaning	Value range	Unit	Parameter
Software version	Current firmware version in device Example: Standard software V2.35 Modified V200.40	0-999,95	1	$\begin{aligned} & \text { 92_REV } \\ & \text { (_STAT) } \end{aligned}$
CS	Checksum of firmware in device	0000-FFFF Hex	1	$\begin{gathered} 115 \text { _CSXOR } \\ \text { STAT) } \end{gathered}$
Serial number	Serial number of device	1	1	$\begin{gathered} \text { 127_S_NR } \\ \text { (_STAT) } \\ \hline \end{gathered}$
Data set name	Name of the current parameter set in the device	max. 27 characters	1	$\begin{gathered} \text { 889_NAMDS } \\ \text { (_CONF) } \end{gathered}$
DC-link voltage	Current voltage in the servocontroller DC link. $\mathrm{U}_{\mathrm{zk}}=\text { Voltage } \cdot \sqrt{2}$	Single-phase typically $325 \mathrm{~V}$ Three-phase typically $565 \mathrm{~V}$	$\begin{aligned} & \mathrm{VDC} \\ & \mathrm{VDC} \end{aligned}$	$\begin{gathered} \text { 405_DCV } \\ \text { (VAL) } \end{gathered}$
Operating hours	Operating hours of the device	0-65535	hrs	$\begin{aligned} & 87 \text { 87TOP } \\ & \text { (_VAL) } \end{aligned}$
Time after power-on	Time after power-on of device	0-65535	min	$\begin{gathered} \hline \text { TSYS_ } 86 \\ \text { (VALL) } \end{gathered}$

Table 5.35 Device - basic settings

Figure 5.64 Slots tab

DM	Meaning	Value range	Unit	Parameter
Slot: 1 module	Assignment of option module in slot 1	see Table 5.33	1	579_OPTN1(_OPT)
Slot 1: Software version	Software version of option module in slot 1	$0-999,95$	1	$576 _$OP1RV(_OPT)
Slot 2: Module	Assignment of option module in slot 1	see Table 5.33	1	$578 _$OPTN2(_OPT)
Slot 2: Software version	Software version of option module in slot 1	$0-999,95$	1	577 _OP2RV(_OPT)

Table 5.36 Slots - basic settings
Possible modules:

Bus	Type	Designation
0	NONE	No option
1	LCAN	CAN $_{\text {Lust }}$ (CM-CAN1)
2	COPEN	CAN $_{\text {open (CM-CAN2) }}$
3	PROFI	ProfibusDP (CM-DPV1)
4	101	I/O module (UM-8140)
5	2AOUT	Analog output (UM-2AO)

Table 5.37 Option modules

5.6.4 Field bus

Actual values

Fieldbus

Figure 5.65 Field Bus tab

DM	Meaning	Value range	Unit	Parameter
Active mode	Configuration of actuation via CAN	0-7	1	$\begin{gathered} \hline 492 \text { _CACNF } \\ \text { (CAN) } \end{gathered}$
Network status	Status of the CAN network (operational, preoperational, prepared)	1 = operational $2=$ preoperational 3 = prepared	1	
Control word	Control word of Rx-Pdo (byte 0,1)	/	1	$\begin{gathered} \text { 573_CACTR } \\ \text { (OPT) } \end{gathered}$
Status word	Status word of Rx-Pdo (byte 2,3)	1	1	$\begin{gathered} \text { 572_CASTA } \\ \text { (OPT) } \\ \hline \end{gathered}$
Extended control word	Extended control word of Rx-Pdo (byte 2.3)	1	1	
Control location	Source of control commands (independent of reference source)	See "Reference structure" section	1	$\begin{gathered} \text { 260_TERM } \\ \text { (_CONF) } \end{gathered}$
Reference selector	Source of reference input (independent of control location)	See "Reference structure" section 4.1.1	1	$\begin{gathered} \text { 280_RSSL1 } \\ \text { (_REF) } \end{gathered}$

Table $5.38 \quad$ Field bus - basic settings

LUST

5.7 Error messages

Actual values ..

Figure 5.66 Warnings/Errors tab

In Figure 5.66 the last errors to occur are displayed, with an indication of the time and reset possibility.

DM	Meaning	Value range	Unit	Parameter
Error	Last errors to occur. Example: E-OTM-1, 1H Error E-OTM, error location 1, point in time in hours	see Appendix B (Troubleshooting)	1	$\begin{aligned} & \text { 95_ERR1 } \\ & \text { (ERR) } \end{aligned}$
Time point	Time between power-on and last error	0-65535	minute s	$\begin{gathered} \text { 94_TERR } \\ \text { (_ERR) } \end{gathered}$
2nd last	Last-but-one error	see Appendix B (Troubleshooting)	1	$\begin{gathered} \hline 96 \text { _ERR2 } \\ \text { (ERR) } \end{gathered}$
3rd last	Last-but-two error	see Appendix B (Troubleshooting)	1	$\begin{gathered} 97 \text { (ERR3 } \\ \text { (ERR) } \end{gathered}$
4th last	Last-but-three error	see Appendix B (Troubleshooting)	1	$\begin{gathered} 98 \text { EERR4 } \\ \text { (_ERR) } \end{gathered}$

Table $5.39 \quad$ Error messages - basic settings

Diagnosis

Plain-text display of the error message / more information on the error location.

Reset error

Acknowledge error and set device to normal condition (ready).

Error reactions

χ^{3} Lrror reactions		x
Undervologe inverter	HALT [1] = Block power slage	\checkmark
Overvolioge inverter	LOCXH [3] = Block power thage, protection aganst re-dat	-
Overcument imenter	LOCKH [3] = Block power stage, protection aganst re-tlat	\checkmark
Ovetempershre motor	LOCXH [3] = Block power stage, protection aganst re-slat	-
Overtempershre inventer	LOCKH [3] = Block power stage, protection aganst re-slat	-
lat switch off motor	LOCKH [3] = Block power stoge, protection aganst re-that	-
External error	STOP [2] = Activale quick thop	\checkmark
Interchange of hadwore imit switches	STOP [2] = Activale quick atop	-
Limil swilch activated	STOP [2] = Activale quick stog	\cdots
Tracking emor	HALT [1] = Block power slage	-
Errer motor beake	LOCKH [3] = Block power stage, protection aganst re-dat	-
Eror in postion sequence control Motion	STOP (2) = Activate quick stop	\cdots
	Ok Cancel Apply	

Figure 5.67 Error reactions

The following error reactions can be programmed depending on the error:

(0) WARN	No error reaction (only warning)
(1) STOP	Block power stage
(2) STOP	Activate quick stop
(3) LOCKH	Block power stage, protection against re-start
(4) LOCKS	Activate quick stop, protection against re-start
(5) RESET	Block power stage, re-start by power-off

Table 5.40

For more information on error messages and their rectification, refer to Appendix B.

LUST

5 Software functions

5.8 Bus systems

Figure $5.68 \quad$ User screen: Bus systems

In the "Bus systems" screen all the settings relevant to the "CAN-Lust", "CAN-OPEN" and "PROFIBUS" bus systems are entered.

For more information on the bus systems refer to the documentation accompanying the relevant bus system.

5.8.1 PROFIBUS

Bus systems...

Profibus

Figure 5.69 PROFIBUS tab

DM	Meaning	Value range	Unit	Parameter
Address-Profibus	Device address With setting 0 HW address coding is active on the module.	$0-99$	l	571_CLADR (_OPT)
Cyclic control telegram expected in	Watchdog monitoring, control log	$0-255$	ms	574 _CAWDG (_OPT)
Update status	Sampling time of status report via bus	$0-32000$	ms	575 _CASCY (_OPT)

Table 5.41 Profibus - basic settings

For more information refer to the user manual "CM-DPV1".

LUST

5.8.2 CANLust

Bus systems..

CM.CAN1

Figure 5.70 CAN Lust tab

DM	Meaning	Value range	Unit	Parameter
Protocol	Protocol used	$\begin{aligned} & \hline \text { CLUST (0) } \\ & \text { COPEN (1) } \end{aligned}$	I	$\begin{aligned} & \hline \text { 654_PRSEL } \\ & \text { (_OPT) } \end{aligned}$
Address-CAN	CANLust device address With setting 0 HW address coding is active on the module.	0-99	1	$\begin{gathered} \text { 571_CLADR } \\ \text { (_OPT) } \\ \hline \end{gathered}$
CAN baud rate	CANLust Baud rate	$\begin{aligned} & 25-500 \\ & \text { Bus: } 5-0 \end{aligned}$	$\begin{aligned} & \hline \text { kbit/ } \\ & \text { sec } \end{aligned}$	$\begin{gathered} \hline \text { 489_CLBDR } \\ \text { (OPT) } \end{gathered}$
Function	Not active	Slave (0) / Master (1)		$\begin{aligned} & \text { 570_CAMOD } \\ & \text { (OPT) } \end{aligned}$
Control mode	Changes the open loop control mode via the bus system. This means that the content of the control and status information is automatically adapted to the selected "preset solution". No subsequent changes are permitted.	$\begin{gathered} \hline \text { (see Table } \\ 5.38) \end{gathered}$	1	$\begin{gathered} \text { 492_CACNF } \\ \text { (OPT) } \end{gathered}$
Cyclic control telegram expected in	Watchdog monitoring, control log	0-255	ms	$\begin{gathered} \text { 574_CAWDG } \\ \text { (OPT) } \end{gathered}$
Update status	Sampling time of status report via bus	0-32000	ms	$\begin{gathered} \text { 575_CASCY } \\ \text { (OPT) } \end{gathered}$

Table 5.42 CAN Lust $^{-}$- basic settings

Control mode / reference transfer

Bus	DM
0	Not used
1	Drivecom, 16 bits reference, actual
2	Drivecom, 32 bits reference, actual
3	Drivecom, 32 bits reference, 2×16 bits actual
4	EasyDrive Basic
5	EasyDrive ProgPos (PCB_4)
6	EasyDrive TabPos (PCB_3)
7	EasyDrive DirectPos (PCB_2)
8	EasyDrive Synchron (PCB_1)

Table 5.43 Control mode / reference transfer

For more information refer to the user manual "CM-CAN1".

Event control TXPDO1

Cyclic actualisation
Send TXPDO1 at changing of

Г IS00	Г IS01	Г1502	Г1503	Г IS04
$\Gamma \mathrm{IE} 00$	Г IE01	Г IE02	「 IE03	
Г 0v00	Г 0V01			
Г Positioning flag 98=1				
[Positoning flag 99=1				
$\square \mathrm{CAN}$-status (CASTA]				
\square Status of device (STAT)				

Figure 5.71 Event control TxPD01

5 Software functions

5.8.3 CANopen

Bus systems..

CMCAN2

Dus systems

Prolbus | CM.CAN1 CM.CAN2 |

Communication module CM-CARZ:
Option modile not connected
Addrear
Boudrste

Contiol mode
5 = Eaty Drive ProgPot [PC8_4 \mp

Evert contiol serving dala
PDOL ... \quad PDO2...

Cancel

Figure 5.72 CANopen tab

DM	Meaning	Value range	Unit	Parameter
Address-CAN	CAN device address With setting 0 HW address coding is active on the module.	0-99		$\begin{gathered} \text { 571_CLADR } \\ \text { (OPT) } \end{gathered}$
CAN baud rate	CAN Baud rate	$\begin{aligned} & 25-500 \\ & \text { Bus: } 5-0 \end{aligned}$	$\begin{aligned} & \hline \text { kbit// } \\ & \text { sec } \end{aligned}$	$\begin{gathered} \text { 489_CLBDR } \\ \text { (OPT) } \end{gathered}$
Control mode	Changes the open loop control mode via the bus system. This means that the content of the control and status information is automatically adapted to the selected "preset solution". No subsequent changes are permitted.	(see Table 5.38)	1	$\begin{gathered} \text { 492_CACNF } \\ \text { (OPT) } \end{gathered}$
Cyclic control telegram expected in	Watchdog monitoring, control \log	0-255	ms	$\begin{gathered} \text { 574_CAWDG } \\ \text { (OPT) } \end{gathered}$
Update status	Sampling time of status report via bus	0-32000	ms	$\begin{gathered} \hline 575 \text { _CASCY } \\ \text { (OPT) } \end{gathered}$

Table 5.44 CANopen - basic settings

For more information refer to the user manual "CM-CAN2".

LUST

5.9 Master encoder/ Encoder simulation

Figure 5.73 User screen: Encoder/Encoder simulation

In the "Encoder/Encoder simulation" screen all the settings for operation with a master encoder ('Conducting encoder') and/or use of encoder simulation are entered.

LUST

5 Software functions

5.9.1 Encoder simulation

Encoder/encoder simulation

Function of siot X5 - position communicatione

C §SIEncoder timulation

C Comesponding to motor encoder (optical encoders cerly)
Number of line of encoder smimaton conesponds lo number of Ihes of parameter sotted encoder with 2048 inct /hev.

- Simulsted by soltwere (all encoders)

```
    Enooder lines = 1X 00<4[5] - incr hevclution
```

Qk.

Cancal Apply

Figure 5.74 Encoder Simulation tab

Encoder simulation connector X5

To forward the signals of the configured position encoder directly "1-to-1", select the first setting. The servocontroller converts the signals of a Sin/ Cos encoder into TTL square signals and forwards them on interface X5. This setting only makes sense for optical encoders (G1 to G8).

If you want to forward the position information to the higher-level controller at a higher resolution, select the "1-to-1" setting. You can then configure the selected lines per revolution in 2^{n} increments from 32 to 65536 (resolver: px 32 to px 65536).

Note: Please note that conversion of the lines per revolution by software entails a small amount of dead time in outputting the position. This setting is typically selected when using a resolver.
The 500 kHz limit frequency of the output must be observed particularly with high numbers of lines per revolution.

Outputs the zero impulses in the setting " 1 to n (only for optical encoders)"

Function description

If the motor-encoder system zero impulse is simulated in the software, it should always be output at the same position.
To resolve the software-related problem of the delay time, when the simulated zero impulse is output it should always be offset by the number of TTL periods set in parameter 488 ECSNO. It is essential that the offset is in the correct direction of rotation.

Time diagram:

1) $t>500 \mu \mathrm{~s}$ (ensured by the controller)
2) first zero impulse

Figure 5.75 Time diagram

Parameterisation and setting

Parameter 488 ECSNO: = zero impulse output delay by an integer number of TTL signal periods (track A, track B)
(default setting: 5 periods, example below: 2 periods;
Setting range: -8191 to +8192)

FISxx := NP_SYNC = LOW => simulation ON

- FISxx := NP_SYNC $=$ HIGH $=>$ simulation OFF

The direction of rotation when passing through the zero impulse must be specified to the servo controller by means of the preceding sign of the parameter ECSNO

- parameterised as:
- 488 ECSNO positive: = clockwise rotation (cw, default)
- 488 ECSNO negative: $=$ counter clockwise

If the parameter ECSNO is too small or the direction of rotation assigned the wrong preceding sign, no simulated zero impulse will be output.

DM	Meaning	Value range	Unit	Parameter
Encoder lines	The output lines per revolution is adjustable with resolvers in 2^{n} increments ($n=5$...16), i.e. 32 to max. 65536 lines. When using the "1-to-1" setting the output lines per revolution corresponds to that of the connected encoder. In the case of encoder types G2 to G7 a zero pulse is outputted directly after system startup. As a result no machine link can be made.	$\begin{gathered} 32(0) \text { to } \\ 65536(11) \\ \\ \text { Bus: } \\ 0-11 \end{gathered}$	Increments/ revolution	$\begin{gathered} \text { 471_ECSLN } \\ \text { (_SYNC) } \end{gathered}$

Table 5.45
Encoder simulation - basic settings
Encoder simulation forms incremental encoder-compatible pulses from the position of the rotary encoder connected to the motor. Accordingly, pulses are delivered in two 90° offset signals A and B as well as a zero pulse R.

Figure 5.76
Encoder simulation signals looking onto the motor shaft (at left when motor rotating clockwise)

Note: If the signal jitters too much or has excessive noise, it can be filtered independently of the actual speed filter ECTF with parameter 429_ECSTF (_SYNC) (factory setting 1 ms).

* The wave terminating resistor is not included in the CDD3000. It must be connected externally.

Figure 5.77 Encoder simulation connection and signal description

Technical data relating to resolution

Type of encoder		Resolver			ptical encode	
Encoder at X5 Number of pole pairs	$\begin{gathered} \text { R1 } \\ p=1 \end{gathered}$	$\begin{gathered} \mathrm{R} 2 \\ \mathrm{p}=2 \end{gathered}$	$\begin{gathered} \text { R8 } \\ p=3 \end{gathered}$	$\overline{\text { G1 }}$	$\begin{gathered} \hline \text { G2, G3, G5 } \\ \text { G6/G7 } \end{gathered}$	G8
$\begin{aligned} & \hline \text { Resolution of encoder evaluation }{ }^{1)} \text { : } \\ & \text { Increments per revolution } \\ & \text { Degrees } \end{aligned}$	$\begin{gathered} 2^{14} \\ 0,022^{\circ} \end{gathered}$	$\begin{gathered} 2^{15} \\ 0,011^{\circ} \end{gathered}$	$\begin{gathered} 3 \times 2^{14} \\ 0,0073^{\circ} \end{gathered}$			$\begin{gathered} 2^{12} \\ 0,088^{\circ} \end{gathered}$
Encoder simulation at X : Standard pulses per revolution	1024 (adjustable	$\begin{gathered} 2048 \\ m p x 32 \end{gathered}$	$\begin{gathered} 3072 \\ p \times 65536) \end{gathered}$	2048 (setting from 32 to 65536	2048 (setting from 32 to 65536)	1024 (setting from 32 to 65536)
Zero pulses per revolution	1	2	3		$1^{2)}$	1
1) Higher resolutions in encoder evaluation result in higher speed resolutions and thus smoother running of the drive. The resolution of the position controller is 16 bits, regardess of the encoder type used. 2) The zero pulse has no machine link.						

Table 5.46 Encoder simulation technical data

For more information on the hardware and on the electrical specification refer to the Operation Manual.

Example: $f=\frac{3000 \mathrm{rpm} \cdot 2048 \mathrm{pulses}}{60 \mathrm{rpms}}=102,4 \mathrm{kHz}$.

Note: The controller connected to the encoder simulation must be able to process its output frequencies. The maximum output frequency is 500 KHz (depending on the cables used: length / type / capacitance)

LUST

5.9.2 Master encoder

Figure 5.78
Master Encoder tab

DM	Meaning	Value range	Unit	Parameter
Input	Signal source for TTL master encoder at X5 or HTL master encoder (only A and B track) at X2	(0) TTL - (1) HTL	1	$\begin{gathered} \text { 473_EC2TP } \\ \text { (_SYNC) } \end{gathered}$
Signal type	Shape of input signals	$\begin{gathered} \text { (0) } A / B \\ \text { (1) } A / D I R \end{gathered}$	1	$\begin{gathered} \text { 475_RSTEP } \\ \text { (_SYNC) } \end{gathered}$
Transmission ratio input impulses/revolution (1)	Lines per revolution of master encoder	$\begin{gathered} \hline 2^{n} \\ n=5-13 \\ (32-8192) \\ \hline \end{gathered}$	Lines/ revolution	$\begin{gathered} \text { 474_EC2LN } \\ \text { (_SYNC) } \end{gathered}$
Transmission ratio numerator (2)	Transmission ratio: Numerator	$\begin{gathered} -65535 \ldots \\ +65536 \end{gathered}$	1	$\begin{gathered} \text { 480_VRNOM } \\ \text { (_SYNC) } \end{gathered}$
Transmission ratio denominator (3)	Transmission ratio: Denominator	$\begin{gathered} 0 \ldots \\ 65536 \end{gathered}$	1	$\begin{gathered} \text { 481_VRDEN } \\ \text { (_SYNC) } \end{gathered}$
adopt immediately	Synchronized application of transmission ratio (after change in user screen)	$\begin{aligned} & \text { (0) OFF } \\ & \text { (1) ON } \end{aligned}$	1	$\begin{gathered} \text { 485_VRSET } \\ \text { (SYNC) } \end{gathered}$

Table 5.47 Master encoder - basic settings

TTL master encoder

The master encoder input X5 permits incremental reference input for loop control. The reference generator is either the encoder simulation of another CDD3000 servocontroller, a standard commercially available incremental encoder or a stepper motor controller. The signal shape corresponds either to

- A/Bincremental encoder signals or

- pulse direction signals when a stepper motor controller is connected.

Parameters to evaluate the signals can be set for signal type, lines per revolution and transmission ratio.

* The wave terminating resistor must be connected externally for the CDD3000.

Figure 5.79 Master encoder input connection and signal description

HTL master encoder

A master encoder with HTL level (24V) can alternatively be connected via control terminal X2. Digital inputs ISD03 and ISD04 are used for this.

You will find the specification of the digital inputs of control terminal X2 in section 2.4 "Specification of control connections".

Note: When a HTL master encoder is in use, both the encoder simulation and the master encoder input at X5 are inactive. In order to maintain the switching times and the edge steepness of the encoder, the cable length dependent on the sampling rate and the supply voltage must not be exceeded. Therefore please refer to the manufacturer's data sheet.

5.9.3 Encoder simulation via SSI

As an alternative to TTL encoder simulation, encoder simulation via SSI can be configured. The absolute position is communicated via the SSI interface. The CDD3000 simulates an SSI encoder, thereby assuming the Slave function in SSI communications.

Communication to the SSI standard for single-turn and multi-turn encoders (as also supported by Heidenhain encoders) utilizes an additional clock pulse before the actual SSI transmission to transmit the data of the current absolute position to the shift register.

The CDD responds to the clock pulse generated by the SSI Master with the absolute position. A range of different protocol formats can be selected.

The parameters relevant for SSI communication are set on the tab.

Figure 5.80 SSI Encoder Simulation tab

DM	Meaning	Value range	Bit no. = Value	Parameter
Design bit structure	Number of data bits / number of clock pulses 12 multi-turn +12 single-turn / 25 clock pulses 8 multi-turn +16 single-turn / 25 clock pulses 10 multi-turn +20 single-turn / 31 clock pulses 12 multi-turn +13 single-turn / 26 clock pulses 10 multi-turn +13 single-turn / 24 clock pulses The data is always transferred with the MSB first (Heidenhain compatible)	$\begin{aligned} & 0:=\text { MU12/SI12 (default) } \\ & 1:=\text { MU8/SI16 } \\ & \text { 2:=MU10/SI20 } \\ & \text { 3:=ENC25-bit (Heidenhain) } \\ & \text { 4:=ENC23-bit } \end{aligned}$		$\begin{gathered} \text { 888_SSIFO } \\ \text { (SYNC) } \end{gathered}$
Baud rate	SSI transfer rate	$\begin{aligned} & \text { 201.6 KBaud } \\ & 500 \text { KBaud } \\ & \text { 1.042 MBaud } \\ & \text { 1,560 MBaud } \end{aligned}$	$\begin{aligned} & 0-1:=00 \\ & 0-1:=01 \\ & 0-1:=10 \\ & 0-1:=11 \end{aligned}$	$\begin{gathered} \text { 889_SSICO } \\ \text { (_SYNC) } \end{gathered}$
Base level		$\begin{aligned} & \text { Low } \\ & \text { High } \\ & \hline \end{aligned}$	$\begin{aligned} & 2:=0 \\ & 2:=1 \end{aligned}$	$\begin{gathered} 889 \text { SSICO } \\ \text { (_SYNC) } \end{gathered}$
Data transfer	Shift first edge of clock pulse, read-in on second (default) Read-in first edge of clock pulse, shift on second (default)		$\begin{aligned} & 3:=0 \\ & 3:=1 \end{aligned}$	$\begin{gathered} \text { 889_SSICO } \\ \text { (SSYNC) } \end{gathered}$
Data form		Binary format (default) Gray format	$\begin{aligned} & 4:=0 \\ & 4:=1 \end{aligned}$	$\begin{gathered} 889 \text { SSICO } \\ \text { (_SYNC) } \end{gathered}$

*The wave terminating resistor must be connected externally for the CDD3000.
Figure 5.81 SSI encoder simulation connection and signal description

5.10 Cam gear

Software cam gears today offer the possibility to replace expensive mechanical cam gears virtually entirely and at low cost. This enables simple parameter-setting and intuitive functionality with short commissioning times.

The cam gear implemented in the postioning controller can most easily be described as a roller with radially raised curves (cams) along the roller axis. 16 cams with their start and end position referred to the roller diameter (cycle) can be arranged at will on the roller. Each cam is assigned an action register which triggers the corresponding actions when the cam is reached. This state can be signalled to a higher-level controller, for example, by setting a flag CMx. The CMx flag status can be transmitted via outputs or over the field bus.

The cam status can also be utilized by writing a Mxx flag in the "iMotion" sequence control.

The cam gear is started and processed when a number of cams not equal to zero is specified.

Figure $5.82 \quad$ Cam gear setup

LUST

DM	Meaning	Value range	FS	Parameter
Start position	The cam positions can be specified in any sequence, but logically they must always be within the cycle. No check of this condition is carried out!	0 ... 2147483647	0	$\begin{gathered} \text { 663_CSTAP } \\ \text { (_CAM) } \\ \hline \end{gathered}$
End position		0 ... 2147483647	0	$\begin{aligned} & 664 \text { CENDP } \\ & \text { (CAM) } \end{aligned}$
Action	Set switching points, set PLC flag.	$\begin{gathered} 00000000 \mathrm{H} . . . \\ \text { FFFFFFFFFH } \end{gathered}$	$\begin{gathered} \text { FFFFOOO } \\ 0 \mathrm{H} \end{gathered}$	$\begin{gathered} \text { 665_CACTN } \\ \text { (CAM) } \end{gathered}$
Cycle cam gear	When the defined cycle has ended it restarts. The cycle is specified in user-specific units (positioning). If no unit is specified, the calculation is made in increments (speedcontrolled). In this, 65536 increments correspond to one revolution of the motor shaft.	0 ... 2147483647	0	648_CCCYC (IN)
Number of cams	Only the defined number of cams is evaluated. If the defined number is zero, the cam gear is not processed.	$0 \ldots 15$	0	$\begin{gathered} \hline 662 \text { CCNUM } \\ \text { (IN) } \end{gathered}$
Hysteresis to avoid jitter effects	The cam length should logically be selected greater than the hysteresis.	0 ... 2147483647	0	666_CCHYS (IN)
Cam gear is driven by	Here the position reference source driving the cam is set. The following settings are possible: "ENCD [0] = Cam gear cycle referred to position encoder":= The cycle of the cam gear is determined by the current position of the position controller. "EGEAR [1] = Cam gear cycle referred to master encoder":= The cycle of the cam gear is determined by the external master encoder.	ENCD ... EGEAR	ENCD	$\begin{gathered} \text { 639_CCENC } \\ \text { (_CAM) } \end{gathered}$

- With a positive edge on the input configured to "ENCAM (36) Start cam gear" or a positive edge of flag 75 in the iMotion sequence program, the cam gear is synchronized to the current position. With this positive edge the cycle of the cam gear is restarted (the cycle is

Table $5.49 \quad$ Cam gear setup

Synchronization of the cam gear

 set to zero).
Stopping the cam gear via iMotion or field bus:

- If the number of cams (parameter "662-CCNUM-Number of cams used") is set to zero, the cam gear is stopped.
- With a negative edge on the input configured to "ENCAM (36) Start cam gear" processing of the cam gear is stopped.
- If the cam gear was started not via a digital input, but via a positive edge of flag 75, a negative edge of flag 75 terminates processing of the cam gear.

Sending CAN telegrams

- The cam gear itself sends no CAN telegrams. By setting flag 98, flag 99 , virtual output OV00 and virtual output OV01, a CAN event handling mechanism is produced. See also: Defining the action of a cam

Defining the action of a cam:

- When you double-click in the Action column of the Cam Gear setup screen the following dialog box opens up:

Figure 5.83 Defining the action of a cam

- To set a flag for the iMotion program, select the "First flag" or "Second flag" and enter a number between 0 and 99.
- To set one or more outputs with a cam active, select the relevant output by clicking on it.
- Note that the selected output must be assigned to the cam gear (e.g.: OS03 = CCOUT (25)). The output is assigned in the Outputs screen.

Figure 5.84 Defining the function of the digital outputs

Appendix A Overview of parameters

The following parameter overview contains all the parameters up to user level 01-MODE $=4$ in the factory setting, in software version 3.20.

Abbreviations:

$R \quad$ Read level (LE), indicates the user level (01-MODE) as from which the parameter is displayed.

W Write level (SE), indicates the user level (01-MODE) as from which the parameter can be edited.

G Dependent on device

Memory and data types:	
Memory types:	
RAM C V	RAM control variable
RAM A V	RAM actual value
FEPROM	Flash-EPROM, retained after power-off
Data types:	
USIGN8	Integer, unsigned
USIGN16	Integer, unsigned
USIGN32	Integer, unsigned Integer, signed
INT8	Integer, signed Integer, signed
INT16	32-bit number with standardization 1/65536, i.e. the Low word indicates the number of decimal places.
INT32Q16	Fixed point number with standardization 1/20, i.e. increment size 0.05 32-bit floating point number in IEEE format
FIXPOINT16	

Note: The Drivemanager has a user-friendly print function which you can use at any time to print off your latest parameter list.

LUST

No.	Name	Unit	Function	Factory set.	Editable online	\mathbf{R}	\mathbf{W}	Data type	Memory type
(_CONF) Device configuration									
7	AUTO	Auto-Start	OFF		2	2	USIGN8	FEPROM	
89	NAMDS	Designation of parameter setting (max. 27 characters)		1	2	STRING	FEPROM		
150	SAVE	Back-up device setup			2	2	USIGN8	RAM_CV	
152	ASTER	Current application data set (ADS)	SCT_2		1	2	USIGN8	FEPROM	
260	CLSEL	Control location selector	TERM		4	4	USIGN8	FEPROM	
300	CFCON	Control mode	SCON		4	4	USIGN8	FEPROM	
690	PMFS	Power stage, switching frequency	8 SHZ		3	4	USIGN8	FEPROM	

(_CAM) Electronic cam gear

640	CCEVS	Event selector for cam gear	00000000 H		4	4	USIGN32	FEPROM	
641	CCEPM	U		OFF		1	4	USIGN8	FEPROM
642	CCOVR			00 H		4	4	USIGN8	FEPROM
643	CCPOS	incr		0	4	4	INT32	FEPROM	
644	CCACT			$00 H$		4	4	USIGN8	FEPROM
645	CCORN			FFOOFFOOH		4	4	USIGN32	RAM_CV
646	CCLPO			0	4	7	USIGN8	RAM_AV	
647	CCNOM			0		4	4	USIGN8	FEPROM
648	CCCYC			CYCLE		4	4	USIGN8	FEPROM
649	CCCFG			0		4	4	USIGN16	FEPROM
650	CCFRM	incr							INT32

(_CTRL) Control setting

460	PCG	rpm	Position control: P-controller gain	4.000		1	3	FLOAT32	FEPROM
462	PDMX	incr	Position control: Maximum tracking error	65536		3	3	INT32	FEPROM
800	TCG	V/A	Torque control: PI controller gain	32.445 .202		4	4	FLOAT32	FEPROM
802	TCTLG	ms	Torque control: PI controller lag time	2	4	4	FLOAT32	FEPROM	
810	SCG	Nm min	Speed control: PI controller gain	0.035		4	4	FLOAT32	FEPROM

Appendix A Overview of parameters

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
811	SCGFA		Speed control: PI controller gain scaling factor	100.00		1	3	FIXPT16	FEPROM
812	SCTLG	ms	Speed control: Pl controller lag time	21		1	3	FLOAT32	FEPROM
816	SCTF	ms	Speed control: Reference input variable filter time constant	0		1	4	FLOAT32	FEPROM
818	ECTF	ms	Speed control: Actual speed filter time constant	0.6		1	3	FLOAT32	FEPROM
(_ENC) Encoder									
430	ECTYP		Assistance parameters for setting the encoder type	R1		3	3	USIGN8	FEPROM
431	CFENC		Encoder type	R		3	3	USIGN8	FEPROM
432	ECLNC		Encoder, incremental encoder lines per revolution	2048		3	3	USIGN16	FEPROM
433	ECNPP		Encoder, number of resolver pole pairs	1		3	3	USIGN8	FEPROM
434	ECOFF		Encoder, offset	0000H		4	4	USIGN16	FEPROM
450	CF2EC		Encoder type for speed and position controller	OFF		4	4	USIGN8	FEPTROM
675	ECCON		Encoder, correction of track signals, mode	OFF		4	4	USIGN8	FEPROM
(_ERR) Error messages									
74	ERES		Reset device errors	STOP		4	4	USIGN8	RAM_CV
94	TERR	min	Time between power-on and last error	0		1	7	USIGN16	RAM_AV
95	ERR1		Last error	- 0.0h		1	7	ERR_STRUC	FEPROM
96	ERR2		Second-last error	- 0.0h		2	7	ERR_STRUC	FEPROM
97	ERR3		Third-last error	- 0.0h		2	7	ERR_STRUC	FEPROM
98	ERR4		Fourth-last error	-0.0h		2	7	ERR_STRUC	FEPROM
423	ERPAR		Faulty parameter in self-test	0		4	15	USIGN16	RAM_AV
524	R-EXT		Response to external error message	STOP		4	4	USIGN8	FEPROM
539	R-FLW		Response to tracking error	WARN		2	3	USIGN8	FEPROM
(_IN) Control inputs									

Appendix A Overview of parameters

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
180	FISAO		Function selector analog standard input ISAOO	ANALG		1	2	USIGN8	FEPROM
181	FISA1		Function selector analog standard input ISA01	OFF		1	2	USIGN8	FEPROM
188	AFILO		Filter for analog channel ISA00	0		4	4	USIGN8	FEPROM
189	AFIL1		Filter for analog channel ISA01	0		4	4	USIGN8	FEPROM
192	IADB0		Backlash range ISA00	0.00		4	4	FIXPT16	FEPROM
193	IADB1		Backlash range ISA01	0.00		4	4	FIXPT16	FEPROM
210	FIS00		Function selector standard input ISDOO	START		1	2	USIGN8	FEPROM
211	FIS01		Function selector standard input ISD01	OFF		1	2	USIGN8	FEPROM
212	FIS02		Function selector standard input 2	OFF		1	2	USIGN8	FEPROM
213	FIS03		Function selector standard input ISD03	OFF		1	2	USIGN8	FEPROM
214	FIE00		Function selector external input IEDOO	OFF		1	2	USIGN8	FEPROM
215	FIE01		Function selector external input IED01	OFF		1	2	USIGN8	FEPROM
216	FIE02		Function selector external input IED02	OFF		1	2	USIGN8	FEPROM
217	FIE03		Function selector external input IED03	OFF		1	2	USIGN8	FEPROM
218	FIE04		Function selector external input IED04	OFF		1	2	USIGN8	FEPROM
219	FIE05		Function selector external input IED05	OFF		1	2	USIGN8	FEPROM
220	FIE06		Function selector external input IED06	OFF		1	2	USIGN8	FEPROM
221	FIE07		Function selector external input IED07	OFF		1	2	USIGN8	FEPROM
222	FIF00		Function selector virtual fixed input 0	OFF		1	2	USIGN8	FEPROM
223	FIF01		Function selector virtual fixed input 1	OFF		1	2	USIGN8	FEPROM
224	FIS04		Function selector standard input ISD04	OFF		1	2	USIGN8	FEPROM
311	RNA1	Nm	Maximum value ISA1 at +10 V for torque control	10		3	3	INT32Q16	FEPROM
312	RNA1	rpm	Maximum value ISA1 at +10 V for speed control	3000		3	3	INT32Q16	FEPROM

Appendix A Overview of parameters

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
821	RNAO	Nm	Maximum value ISA0 at +10 V for torque control	10		3	3	INT32Q16	FEPROM
822	RNAO	rpm	Maximum value ISAO at +10 V for speed control	3000		3	3	INT32Q16	FEPROM
(_KPAD) KeyPad KP200									
1	MODE		User level of KP200	1		1	1	USIGN8	RAM_CV
360	DISP		Parameter for continuous actual value display of KP200	400		2	2	USIGN16	FEPROM
361	BARG		Parameter for bar graph display of KP200	170		2	2	USIGN16	FEPROM
362	PSW2		Password for user level 2 of KP200	0		2	2	USIGN16	FEPROM
363	PSW3		Password for user level 3 of KP200	0		3	3	USIGN16	FEPROM
364	PSW4		Password for user level 4 of KP200	0		4	4	USIGN16	FEPROM
367	PSWCT		Password for Control menu of KP200	0		3	3	USIGN16	FEPROM
368	PNUM		Parameter number display of KP200 on/off	ON		4	4	USIGN8	FEPROM
369	CTLFA		Multiplier of incremental value in CTRL menu (KP200)	10000		4	4	USIGN16	FEPROM
(_LIM) Limitations									
410	SPDOH	rpm	rpm Hysteresis, standstill recognition	0		1	2	INT32Q16	FEPROM
411	SPD_0	rpm	rpm Speed limit value 0	10		1	2	INT32Q16	FEPROM
518	ILIM5	Hz	Limitation of Imax at $\mathrm{f}>5 \mathrm{~Hz}$	0		4	4	FLOAT32	FEPROM
803	TCMMX	Nm	Limitation: Maximum torque	2		1	3	FLOAT32	FEPROM
805	SCALE		Limitation: Torque scaling factor	100		4	4	USIGN8	RAM_CV
813	SCSMX	rpm	Limitation: Maximum speed	3000		1	3	FLOAT32	FEPROM
(_MOT) Motor data									
153	CFMOT		Motor type	PS		4	5	USIGN8	FEPROM
157	$\begin{aligned} & \mathrm{MOSN} \\ & \mathrm{M} \end{aligned}$	rpm	Motor speed, nominal value	3000		1	5	USIGN16	FEPROM
158	$\begin{aligned} & \hline \mathrm{MOCN} \\ & \mathrm{M} \end{aligned}$	A	Motor current, nominal value	1		1	5	FLOAT32	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
160	MOJ NM	kgmm	Motor moment of inertia	0.00074		4	5	FLOAT32	FEPROM
330	MOPTC		Type of PTC evaluation	OFF		2	3	USIGN8	FEPROM
334	MOTMX		Maximum motor temperature	150		4	4	USIGN16	FEPROM
337	MOPCO		Motor PTC Selection of connection	X3		4	5	USIGN8	FEPROM
453	MOENP		Motor type on the electronic nameplate	255		4	4	USUGN8	FEPROM
840	$\begin{aligned} & \text { MOFN } \\ & \text { M } \end{aligned}$	Vs	Motor parameter: Rated flux	0.207139		4	5	FLOAT32	FEPROM
842	MOR_S	Ohm	Motor parameter: Stator resistance	1.875		4	5	FLOAT32	FEPROM
843	MOR_R	Ohm	Motor parameter: Rotor resistance	2		4	5	FLOAT32	FEPROM
844	MONPP		Motor parameter: Number of pole pairs	3		4	5	USIGN8	FEPROM
850	MOL_M	H	Motor parameter: Magnetizing inductance	0.0058		4	5	FLOAT32	FEPROM
851	MOL_S	H	Motor parameter: Leakage inductance ASM/Stator inductance SM	0.0058		4	5	FLOAT32	FEPROM
852	$\begin{aligned} & \text { MOMN } \\ & \text { M } \end{aligned}$	Nm	Motor torque, nominal value	1		1	5	FLOAT32	FEPROM
853	$\begin{aligned} & \text { MOMM } \\ & \mathrm{X} \end{aligned}$	Nm	Motor torque, maximum value	2		1	5	FLOAT32	FEPROM
854	M012T		i^2xt limitation of motor	0		4	4	FLOAT32	FEPROM
856	MOSMX	rpm	Motor speed, maximum value	3000		1	5	USIGN16	FEPROM
857	MOTYP		Motor type			1	4	STRING	FEPROM

(_OPT) Option modules

148	TXEV1		Event to send 1st status identifier	0001 H		4	4	USIGN16	FEPROM
149	TXEV2		Event to send 2nd status identifier	0000 H		4	4	USIGN16	FEPROM
489	CLBDR		CANlust baud rate	500		3	3	USIGN8	FEPROM
492	CACNF	CANlust reference transfer mode	4		4	4	USIGN8	FEPROM	
570	CAMOD		Function selection option module CANlust	SLAVE		4	4	USIGN8	FEPROM
571	CLADR		CANlust device address	0		4	4	USIGN8	FEPROM
572	CASTA	CAN bus status word	0000 H		4	15	USIGN16	RAM_AV	
573	CACTR	CAN bus control word	0000 H		4	4	USIGN16	RAM_CV	
574	CAWDG	CAN bus watchdog time (0 = OFF)	0		3	3	USIGN8	FEPROM	
575	CASCY	ms	Sampling time for status message	80		3	3	USIGN16	FEPROM
576	OP1RV	Software version option module slot 1	0.00		3	7	FIXPT16	RAM_AV	
577	OP2RV	Software version option module slot 2	0.00		3	7	FIXPT16	RAM_AV	

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
578	OPTN2		Assignment of option module slot 2	NONE		4	15	USIGN8	RAM_AV
579	OPTN1		Assignment of option module slot 1	NONE		4	15	USIGN8	RAM_AV
580	COADR		CANopen device address	0		4	4	USIGN8	FEPROM
581	COBDR		CANopen baud rate	500		3	3	USIGN8	FEPROM
582	PBADR		Profibus DP device address	0		4	4	USIGN8	FEPROM
583	IOEXT		States of external //Os	0000H		1	15	USIGN16	RAM_AV
584	TXMAP		Mapping parameter for status identifier 2	00000000H		4	4	USIGN32	FEPROM
585	RXMAP		Mapping parameter for control identifier 2	00000000H		4	4	USIGN32	FEPROM
586	TXMPC		Number of mapped send parameters	0		4	4	USIGN8	FEPROM
587	RXMPC		Number of mapped receive parameters	0		4	4	USIGN8	FEPROM
(_OUT) Control outputs									
203	OAFIO		Filter constant for analog output OSDOO	4		3	3	USIGN8	FEPROM
205	FOAO		Analog selector for digital output OSDOO	SPEED		1	2	USIGN8	FEPROM
206	OAOMN		Lower frequency limit for analog output channel 0	0		3	3	INT16	FEPROM
207	OAOMX		Upper frequency limit for analog output channel 0	100		3	3	INT16	FEPROM
231	REF_R	Nm	Reference-reached window for torque control	1		1	2	INT32Q16	FEPROM
232	REF_R	rpm	Reference-reached window for speed control	20		1	2	INT32Q16	FEPROM
233	REF_R	incr	Reference-reached window for position control	100		1	2	USIGN32	FEPROM
240	FOSOO		Function selector standard output OSDOO	C_RDY		1	2	USIGN8	FEPROM
241	FOS01		Function selector standard output OSDO1	ACTIVE		1	2	USIGN8	FEPROM
242	FOSO2		Function selector standard output OSD02	OFF		1	2	USIGN8	FEPROM
243	FOEOO		Function selector external output OEDOO	OFF		1	2	USIGN8	FEPROM
244	FOE01		Function selector external output OEDO1	OFF		1	2	USIGN8	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
245	FOE02		Function selector external output OED02	OFF		1	2	USIGN8	FEPROM
246	FOE03		Function selector external output OED03	OFF		1	2	USIGN8	FEPROM
247	FOS03		Function selector standard output OSD03	OFF		1	2	USIGN8	FEPROM
248	FOV00		Function selector virtual output OVOO	OFF		1	2	USIGN8	FEPROM
249	FOV01		Function selector virtual output OV01	OFF		1	2	USIGN8	FEPROM
424	ERRAC		At error reactions STOP and LOCKS: Power stage siwtched off at standstill	ON		2	2	USIGN8	FEPROM
465	BRAKE		Actuation mode for motor brake	HOLD2		1	2	USIGN8	FEPROM
467	THTDC	ms	Time between engagement of brake and shut-off of control	100		1	2	USIGN16	FEPROM
497	SELDC		Stop the power stage after quick stop	ACTV		1	2	USIGN8	FEPROM
804	TCAVM	Nm	Threshold value for actual torque value monitoring	4.099.991		3	3	INT32Q16	FEPROM
814	SCAVM	rpm	Threshold value for actual speed monitoring	3000		3	3	INT32Q16	FEPROM
(_PBAS) Positioning, basic setting									
704	POVMX		Maximum achievable process speed	16384		4	4	USIGN32	FEPROM
715	POEGW		Quick jog speed	20		4	4	USIGN32	FEPROM
716	POSGW		Slow jog speed	5		4	4	USIGN32	FEPROM
718	POSWP		Positive software limit switch	0		4	4	INT32	FEPROM
719	POSWN		Negative software limit switch	0		4	4	INT32	FEPROM
720	POWIN		Reference-reached window	100		4	4	USIGN16	FEPROM
734	POQPN		Source of program number	0		4	4	USIGN8	FEPROM
735	POPKD		Coding of program number	FIX		4	4	USIGN8	FEPROM
761	POTPO		Polarity of Touchprobe	POS		4	4	USIGN8	FEPROM
762	POTNP		Polarity of zero pulse probe	POS		4	4	USIGN8	FEPROM
763	PORTA		Indexing table application	OFF		4	4	USIGN8	FEPROM
764	PONAR		Number of angle units per revolution	1		4	4	INT32	FEPROM
765	POTPT	ms	Timeout of "target position reached" monitor	500		4	4	USIGN16	FEPROM
770	POTBS		Start condition for driving set selection via terminal	REFR		4	4	USIGN8	FEPROM
788	POWIT	ms	Time in reference-reached window until display	0		4	4	USIGN16	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
(_PPAR) Positioning, parameters									
727	POTAB		Position table	0		4	4	INT32	FEPROM
728	POVAR		Variables	0		4	4	INT32	FEPROM
729	POMER		Flags	0		4	4	USIGN8	FEPROM
730	POZAH		Numerator	0		4	4	USIGN16	RAM_CV
745	POAPO		Current program set number of active process program	0		4	4	USIGN16	RAM_CV
775	FSM75		Function selector flag M75	OFF		1	2	USIGN8	FEPROM
776	FSM76		Function selector flag M76	OFF		1	2	USIGN8	FEPROM
777	FSM77		Function selector flag M77	OFF		1	2	USIGN8	FEPROM
778	FSM78		Function selector flag M78	OFF		1	2	USIGN8	FEPROM
779	FSM79		Function selector flag M79	OFF		1	2	USIGN8	FEPROM
(PPRAG) Positioning, program									
744	POAPR		Number of active process program	0		4	7	USIGN8	RAM_AV
746	POENA		Enable positioning software	OFF		4	4	USIGN8	FEPROM
751	POCMD		Direct command input in manual mode			4	4	STRING	RAM_CV
758	POTKD		Coding of table index	BIN		4	4	USIGN8	FEPROM
759	POQTI		Source of table index	0		4	4	USIGN8	RAM_CV
(_PRAM) Positioning, acceleration profiles									
552	POSMX		Velocity for reference input via SIO, fixed pos., bus	20		4	4	INT32	FEPROM
553	POACC		Startup acceleration for reference input via SIO, fixed pos., bus	10		4	4	USIGN32	FEPROM
554	PODEC		Braking acceleration for reference input via SIO, fixed pos., bus	10		4	4	USIGN32	FEPROM
561	OIREF	incr	Target position of online interpolator	0		4	4	INT32	RAM_CV
562	OISMX	incr/ms	Max. process speed of online interpolator	1092		4	4	INT32Q16	RAM_CV
563	OIACC	incr/mss	Max. linear startup acceleration of online interpolator	4		4	4	INT32Q16	RAM_CV
564	OIDEC	incr/mss	Max. linear braking acceleration of online interpolator	4		4	4	INT32Q16	RAM_CV
565	OII TM	ms	Smoothing time of online interpolator	0		4	4	USIGN16	RAM_CV
566	OICTR		Control/status word of online interpolator	0000H		4	4	USIGN16	RAM_CV
705	POBEP		Acceleration mode in positive direction	LIN		4	4	USIGN8	FEPROM
706	POBEN		Acceleration mode in negative direction	LIN		4	4	USIGN8	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
707	POLAP		Startup acceleration rate in positive direction	10		4	4	USIGN32	FEPROM
708	POLAN	Startup acceleration rate in negative direction	10		4	4	USIGN32	FEPROM	
709	POBLP	Braking acceleration rate in positive direction	10		4	4	USIGN32	FEPROM	
710	POBLN	Braking acceleration rate in negative direction	10		4	4	USIGN32	FEPROM	

(_PRR) Positioning, homing

717	PONKR	Zero correction	0		4	4	INT32	FEPROM
722	PORTY	Homing mode type	1		4	4	USIGN8	FEPROM
723	PORPO	Polarity of reference cam	POS		4	4	USIGN8	FEPROM
724	PORV1	Homing speed 1	100		4	4	USIGN32	FEPROM
725	PORV2	Homing speed 2	20		4	4	USIGN32	FEPROM
726	PORV3	Homing speed 3	4		4	4	USIGN32	FEPROM
792	POZP	Zero search	ON		2	2	USIGN8	FEPROM

(_PSRD) PosMod standardizations

700	POWGZ	Travel standardization numerator	1	4	4	USIGN32	FEPROM
701	POWGN	Travel standardization denominator	1	4	4	USIGN32	FEPROM
711	POAVE	Velocity standardization	1	4	4	INT32Q16	FEPROM
712	POABE	Acceleration standardization	1	4	4	INT32Q16	FEPROM
721	POSIG	Preceding sign of direction of rotation	POS	4	4	USIGN8	FEPROM
766	POWUN	Standardized unit for positioning travel of PosMod		4	4	STRING	FEPROM
767	POSUN	Standardized unit for velocity of PosMod		4	4	STRING	FEPROM
768	POAUN	Standardized unit for acceleration of PosMod		4	4	STRING	FEPROM
819	NAUNS	Standardization assistant: Dimension unit: travel	incr	2	2	USIGN8	FEPROM
823	NAUNV	Standardization assistant: Dimension unit: velocity	incr/s	2	2	USIGN8	FEPROM
824	NAUNA	Standardization assistant: Dimension unit: acceleration	incr/s/s	2	2	USIGN8	FEPROM
825	NAZS	Standardization assistant: Travel standardization numerator	65536	2	2	FLOAT32	FEPROM
826	NANS	Standardization assistant: Travel standardization denominator	65536	2	2	FLOAT32	FEPROM
827	NABAS	Standardization assistant: Reference page	incr	2	2	USIGN8	FEPROM

Appendix A Overview of parameters

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
828	NARND	U	Standardization assistant: Revolutions of load or motor	1		2	2	FLOAT32	FEPROM
829	NAGZ1		Standardization assistant: Transmission ratio, drive	1		2	2	USIGN32	FEPROM
855	NAGZ2		Standardization assistant: Transmission ratio, output	1		2	2	USIGN32	FEPROM
858	NART		Standardization assistant: Indexing table travel	1		2	2	FLOAT32	FEPROM
(_REF) Reference structure									
280	RSSL1		Reference selector 1	RAO		4	4	USIGN8	FEPROM
281	RSSL2		Reference selector 2	RCON		4	4	USIGN8	FEPROM
282	RAO		Analog reference ISA0	0		4	15	INT32Q16	RAM_AV
283	RA1		Analog reference ISA1	0		4	15	INT32Q16	RAM_CV
284	RSIO		Reference of LustBus	0		4	4	INT32Q16	RAM_CV
286	RDIG		Digital reference input	0		4	15	INT32Q16	RAM_AV
287	ROPT1		Reference value of option slot 1	0		4	6	INT32Q16	RAM_AV
288	ROPT2		Reference value of option slot 2	0		4	6	INT32Q16	RAM_CV
289	SADD1		Offset for reference selector 1	0		1	1	USIGN8	FEPROM
290	SADD2		Offset for reference selector 2	0		1	1	USIGN8	FEPROM
291	REF1		Reference of reference selector 1	0		4	15	INT32Q16	RAM_AV
292	REF2		Reference of reference selector 2	0		4	15	INT32Q16	RAM_AV
293	REF3		REF1 + REF2	0		4	15	INT32Q16	RAM_AV
295	REF5		Reference after ramp generator	0		4	15	INT32Q16	RAM_AV
296	REF6		Reference after smoothing	0		4	15	INT32Q16	RAM_AV
624	TBSEL		Selection fixed speed/position	0		3	3	USIGN8	RAM_CV
(_RFIX) Fixed reference values									
270	RFIX1	rpm	Fixed speed 1	0		3	3	INT32Q16	FEPROM
271	RFIX2	rpm	Fixed speed 2	0		3	3	INT32Q16	FEPROM
272	RFIX3	rpm	Fixed speed 3	0		3	3	INT32Q16	FEPROM
273	RFIX4	rpm	Fixed speed 4	0		3	3	INT32Q16	FEPROM
274	RFIX5	rpm	Fixed speed 5	0		3	3	INT32Q16	FEPROM
275	RFIX6	rpm	Fixed speed 6	0		3	3	INT32Q16	FEPROM
276	RFIX7	rpm	Fixed speed 7	0		3	3	INT32Q16	FEPROM
277	RFIX8	rpm	Fixed speed 8	0		3	3	INT32Q16	FEPROM
(_SIO) Serial interface RS232									

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
81	SBAUD	1/s	LustBus transfer rate	57600		4	4	USIGN8	FEPROM
82	SADDR		LustBus device address	1		4	4	USIGN8	FEPROM
83	SDMMY		LustBus dummy parameter	0		4	4	USIGN8	RAM_CV
84	SWDGT	5	LustBus watchdog time setting	0.00		4	4	FIXPT16	FEPROM
85	SERR		LustBus error status word	OOH		4	4	USIGN8	RAM_AV
494	SCTL2		Control word to set ext. outputs via SIO	0		4	4	USIGN16	RAM_CV
551	SCTL1		Control word of serial interface	0		4	4	USIGN16	RAM_CV
(_SRAM) Speed acceleration rate profile									
52	ACCR	rpm/s	Speed control: Acceleration ramp	0		1	2	USIGN16	FEPROM
102	DECR	rpm/s	Speed control: Deceleration ramp	0		1	2	USIGN16	FEPROM
496	STOPR	rpm/s	Stop ramp	0		1	2	USIGN16	FEPROM
560	JTIME	ms	Speed control: Smoothing time of sinusoidal ramp	0		1	2	USIGN16	FEPROM
(STAT) Device status									
90	SREV		Base standard version of modified software	1		4	7	FIXPT16	RAM_CV
92	REV		Software version	3		1	7	FIXPT16	FEPROM
106	CRIDX		Revision index as suffix to version number	97		4	7	USIGN8	RAM_CV
127	S_NR		Serial number of device			3	7	STRING	FEPROM
130	NAME		Symbolic device name			1	6	STRING	FEPROM
390	TYPE		Device type	30000		1	15	USIGN16	RAM_AV
394	A_NR		Article number of device			3	7	STRING	FEPROM
757	POSTI		Status information of positioning and sequence control	0		4	7	INT16	RAM_AV
(_SYNC) Synchronous functions									
470	FIEC2		Position communication (X5): Function selector	ECSIM		3	3	USIGN8	FEPROM
471	ECSLN		Encoder simulation: Lines per revolution	1024		3	3	USIGN8	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	W	Data type	Memory type
473	EC2TP		Master encoder: Signal level	TTL		3	3	USIGN8	FEPROM
474	EC2LN		Master encoder: Lines per revolution	2048		4	4	USIGN16	FEPROM
475	RSTEP		Master encoder: Signal type	A/B		3	3	USIGN8	FEPROM
476	RSDIR		Master encoder: Direction selection where RSTEP=A/DIR	NORM		3	3	USIGN8	FEPROM
477	VRAEN		Master encoder: Activation transmission ratio via ISA00	OFF		3	3	USIGN8	FEPROM
478	VRSMN		Master encoder: Analog transmission ratio at -10V	1		3	3	USIGN16	FEPROM
479	VRSMX		Master encoder: Analog transmission ratio at +10 V	2		3	3	USIGN16	FEPROM
480	VRNOM		Master encoder: Numerator of transmission ratio	1		3	3	INT32	FEPROM
481	VRDEN		Master encoder: Denominator of transmission ratio	1		3	3	USIGN32	FEPROM
482	RCDE	U		0		3	3	INT32Q16	FEPROM
483	RCEM	U		1		3	3	INT32Q16	FEPROM
484	RCO	U		0		3	3	INT32Q16	FEPROM
485	VRSET		Synchronous application of transmission ratio	OFF		4	4	USIGN8	RAM_CV
(SYS) System setup									
4	PROG		Reset device to factory setting	2		4	4	USIGN16	FEPROM
15	PLRDY		Activate control initialization	OFF		4	4	USIGN8	RAM_CV
151	ASTPR		Original application data set	SCT_2		1	4	USIGN8	FEPROM
392	CFHSW		Hardware status word of system	0000H		4	15	USIGN16	RAM_AV
393	CFSSW		Control structure status word of system	0000H		4	15	USIGN16	RAM_AV
399	NORMS		De-standardization values for Drive Manager	0		1	15	FLOAT32	RAM_AV
403	STAT		Status word of system	0000H		4	15	USIGN16	RAM_AV
495	IOSTA			0000H		1	15	USIGN16	RAM_AV
670	ECCOA		Encoder track A, offset correction	0		4	6	INT32	FEPROM
671	ECCOB		Encoder track B, offset correction	0		4	6	INT32	FEPROM
672	ECCAA		Encoder track A, amplitude correction factor	1073741824		4	6	INT32	FEPROM
673	ECCAB		Encoder track B, amplitude correction factor	1073741824		4	6	INT32	FEPROM

No.	Name	Unit	Function	Factory set.	Editable online	R	\mathbf{W}	Data type	Memory type
674	ECCPH	Encoder tracks A and B, phase correction factor	0		4	6	INT32	FEPROM	

(_XXX) SC-Drives (in preparation)

817	SCJ	kgmm	SCD, overall moment of inertia of system with motor	0		4	4	FLOAT32

(_PSET) Positioning, fixed positions

555	PDPOS		Driving sets: Target position	0		4	4	INT32	FEPROM
556	PDMOD		Driving sets: Mode (Absolute, Relative)	0		4	4	USIGN8	FEPROM
557	PDSPD		Driving sets: Velocity	0		4	4	INT32	FEPROM
558	PDACC		Driving sets: Startup acceleration	0		4	4	USIGN32	FEPROM
559	PDDEC		Driving sets: Braking acceleration	0		4	4	USIGN32	FEPROM

(_MENU) Menu control, KP200

8	GROUP		Subject area of KP200	- KPAD		1	1	USIGN8	RAM_CV

(_VAL) Actual value

5	SVSLD		Progress indicator for data backup in FLASH memory	0		1	15	USIGN8	RAM_AV
75	CURNT	A	Effective value of phase current	0		1	15	INT32Q16	RAM_AV
76	TORQE	Nm	Torque	0		1	15	INT32Q16	RAM_AV
77	SPEED	rpm	Actual speed	0		1	15	INT32Q16	RAM_AV
78	POS		Position	0		1	7	INT32Q16	RAM_AV
79	DPOS			0		3	7	INT32Q16	RAM_AV
86	TSYS	min	System time after power-up	0		3	15	USIGN16	RAM_AV
87	TOP	h	Operating hours meter	20		3	7	USIGN16	FEPROM
400	ACTV		Current actual value	0		1	15	INT32Q16	RAM_AV
405	DCV	V	DC-link voltage	0.00		1	15	FIXPT16	RAM_AV
406	REFV		Current reference value	0		1	15	INT32Q16	RAM_AV
407	MTEMP	Motor temperature in KTY84 evaluation	0.00		1	15	FIXPT16	RAM_AV	
416	ISAO	V	Filtered input value ISA0	0		2	15	INT32Q16	RAM_AV

No.	Name	Unit	Function	Factory set.	Editable online	R	\mathbf{W}	Data type	Memory type
417	ISA1	V	Filtered input value ISA1	0		2	15	INT32Q16	RAM_AV
425	DTEMP		Interior temperature	Heat sink temperature	0.00	1	15	FIXPT16	RAM_AV
427	TEMP		Indexing table position within the preset angle units	0	1	15	FIXPT16	RAM_AV	
739	PORTP	Override	4	7	INT32	RAM_AV			
753	POOVR		Current actual position in travel units	0		4	7	USIGN8	RAM_AV
754	POAIP		Current reference position in travel units	0	4	7	INT32	RAM_AV	
755	POASP		Current tracking error in travel units	0		4	7	INT32	RAM_AV
756	POADP				4	7	INT32	RAM_AV	

Appendix B Troubleshooting

Errors in operation are signalled as follows:

- CDD3000:

Red LED (H1) flashes (flash code see Table A. 2

- DriveManager
- KeyPad KP200:

Possible causes of the error and measures to remedy it are displayed in a window.
The display is backlit in red and indicates the error (1) and an error location number (2). The error location number provides detailed localization of the cause of the error.

Error reaction

When an error occurs the servocontroller responds with a specific function sequence. This is allocated to a corresponding reaction number.

Reaction no.	Function
0	Signal error only, no further reaction (warning).
1	Signal error and disable power stage.
2	Signal error, quick-stop and wait for cancellation of start signal.
3	Signal error, disable power stage and secure against restarting ${ }^{\text {1). }}$.
4	Signal error, quick-stop, wait for cancellation of start signal and secure against restarting ${ }^{11}$.
5	Signal error, disable power stage and wait for error reset; error reset only possible by complete cutting of power.

1) Only relevant with programmed autostart function.

Table A. 1
Error reaction

LEDs

At the top right of the servocontroller there are three status LEDs coloured red $(\mathrm{H} 1)$, yellow $(\mathrm{H} 2)$ and green $(\mathrm{H} 3)$.

Device status	Red LED (H1)	Yellow LED (H2)	Green LED (H3)
Power on	\bigcirc	\bigcirc	-
Servocontroller ready (ENPO set)	\bigcirc	\bigcirc	\bigcirc
Control enabled	\bigcirc	*	\bigcirc
Error	* (flash code)	\bigcirc	-
Warning (in "ready" condition)	-	-	-
Warning (in "control enabled" condition)	\bigcirc	*	\bigcirc

O LED off, LED on, 米 LED flashing
Table A. 2 Meanings of LEDs

Error messages

If an error occurs in operation it is indicated by a flash code from LED H1 (red) on the servocontroller. If a KP200 is connected the KP200 indicates the error type as an abbreviation. When the DriveManager is active the error is additionally reported in plain text.

Flash code of red LED H1	Display KeyPad	Reaction No.	Explanation	Cause/Remedy
1 x	Various messages	0-5	see Table A. 4	
2 x	E-OFF	1	Undervoltage shut-off	Check power supply. Also occurs briefly in response to normal power-off.
3 x	E-OC	3	Current overload shut-off	Short-circuit, ground fault: Check cabling of connections, check motor coil, check neutral conductor and grounding (see also section 3, Installation). Device setup not correct: Check parameters of control circuits. Check ramp setting.
4 x	E-OV	3	Voltage overload shut-off	Voltage overload from mains: Check mains voltage. Restart device. Voltage overload resulting from feedback from motor (regenerative operation): Slow down braking ramps. If not possible, use a braking resistor.
5 x	E-OLM	3	Motor protection shut-off	Motor overloaded (after I x t monitoring): Slow down process cycle rate if possible. Check motor dimensioning.
6 x	E-OLI	3	Device protection shut-off	Device overloaded: Check dimensioning. Possibly use a larger device.
7 x	E-OTM	3	Motor temperature too high	Motor PTC correctly connected? Motor PTC evaluation correctly set? Motor overloaded? Allow motor to cool down. Check dimensioning.
8 x	E-OTI	3	Overheating in servocontroller	Ambient temperature too high: Improve ventilation in switch cabinet. Load too high during driving/braking: Check dimensioning. Possibly use a braking resistor.

Table A. 3 Error messages/flash code

Bus	DM/KP	Error location no.	Meaning	Comment
0			No error	
1	E-CPU	0	Processor faulty or wrong software version	1
2	E-OFF	1	Undervoltage in DC link ($\leq 212 / 425 \mathrm{~V}$), also applied on normal power-off.	
3	E-OC	19	Max. permissible output current exceeded (software shut-off)	
3	E-OC	34	Current overload shut-off of servo resulting from fast lxt, effective to 5 Hz output frequency	
3	E-OC	35	Short-circuit detected during self-test	
3	E-OC	41	Max. permissible output current exceeded (hardware shut-off)	
4	E-OV	1	Overvoltage in DC link	
5	E-OLM	1	Current overload shut-off: Ix\|xt monitoring of motor, dependent on parameter MOI2T	
6	E-OLI	1	Current overload shut-off: Ixt monitoring of servo	
7	E-OTM	1	Motor overheating	
8	E-OTI	31	Servo heat sink overheating	
8	E-OTI	32	Servo interior overheating	
9	E-PLS	9	Plausibility check detected invalid parameter or program sequence	1
10	E-PAR	0	Invalid parameter setting	
10	E-PAR	7	Value range infringement of a parameter setting detected. Parameter ERPAR contains number of incorrect parameter	1
10	E-PAR	8	After reinitialization of the parameter list in the device startup phase an invalid parameter value was found. Parameter ERPAR contains the number of this parameter.	1
10	E-PAR	9	Error initializing a parameter with its permanent memory value. Parameter ERPAR contains the number of the parameter.	1
10	E-PAR	13	The combination of function selector settings for one of the analog inputs and the reference selector are mutually contradictory.	1
10	E-PAR	16	Error initializing factors for analog output to digital outputs.	1
10	E-PAR	48	Error initializing a variable	
10	E-PAR	101	Setting of number of resolver pole pairs not possible	1
11	E-FLT		Global error in floating point calculation	1

Note:

1 = If this error is repeated please contact your local Service Partner
2 = See description of field bus (user manual)

Table A. 4 Error messages

Appendix B Troubleshooting

Bus	DM/KP	Error location no.		Comment
12	E-PWR	6	No power stage, or power stage unknown: No valid power stage ID detected	1
12	E-PWR	8	No power stage, or power stage unknown: No valid power stage ID detected	1
13	E-EXT	1	Error request received via digital input with function E-EXT	
14	E-USR	1	Error executing a customer-specific software function	
15	E-OP1		Error in option module at slot 1 (X8), further information in user manual	2
16	E-OP2		Error in option module at slot 2 (X9), further information in user manual	2
18	E-SIO	11	SIO watchdog tripped (LustBus)	
19	E-EEP		Error accessing EEPROM	1
21	E-SC	20	Error in auto-tuning	
25	E-HWE	47	Hardware limit switches interchanged	
26	E-OL5	1	Ixt shut-off below 5 Hz to protect power stage	
30	E-ENC	1	Encoder wire break detection	
30	E-ENC	123	Hiperface: Communication error signalled by encoder	
30	E-ENC	124	Hiperface: Communication error signalled by dSMC	
30	E-ENC	125	Hiperface: Unknown encoder type	
30	E-ENC	126	Hiperface: Error signalled by encoder (but communication is OK)	
30	E-ENC	127	Hiperface: Communication parameters not found	
30	E-ENC	131	Error in commutation finding	1
31	E-TIM		Runtime monitor error	
32	E-FLW	1	Position tracking error	
32	E-FLW	24	Speed tracking error	
33	E-WDG	11	Watchdog for RS232 (LustBus) triggered	
34	E-VEC		Initialization error	
35	E-BRK	1	Monitoring unit for brake output (OSD03) signals error	
36	E-POS	210	Pos. hardware limit switch approached	
36	E-POS	211	Neg. hardware limit switch approached	
36	E-POS	212	Pos. software limit switch approached	
36	E-POS	213	Neg. software limit switch approached	
1				

Note:

1 = If this error is repeated please contact your local Service Partner
2 = See description of field bus (user manual)
Table A. 4 Error messages

Bus	DM/KP	Error location no.		Comment
36	E-POS	214	Positioning job with no defined reference point	
36	E-POS	215	Error accessing optional hardware	
36	E-POS	216	Selected program not available	
36	E-POS	217	J ump to non- existent record number	
36	E-POS	218	Called subroutine not available	
36	E-POS	219	Position outside positioning range	
36	E-POS	220	Division by zero	
36	E-POS	221	Max. subroutine nesting depth exceeded	
36	E-POS	223	Target position not reached	
36	E-POS	224	No feed hold (only positioning commands)	
36	E-POS	225	Selection (Auto/Homing// og) not permitted	
36	E-POS	226	ProgPos: Index overflow in indexed addressing, TabPos: Table index faulty (1<=Index<=31)	
36	E-POS	232	Error reading a parameter in sequence program	
36	E-POS	233	Error writing a parameter in sequence program	
36	E-POS	234	Error executing a positioning command with positioning travel by Touchprobe	
36	E-POS	235	Impermissible command in this status	
36	E-POS	236	Hardware limit switches interchanged	
37	E-FLH		Error in data flash memory	
38	E-HW	45	Hardware limit switch left (all control modes)	
38	E-HW	46	Hardware limit switch right (all control modes)	
39	E-HWE	47	Hardware limit switches interchanged (all control modes)	
40	E-WRN	59	Torque limit (TCMMX) automatically limited	
40	E-WRN	60	Cycle time of status report via field bus too short	
40	E-WRN	61	Position reference / travel standardization outside value range	
40	E-WRN	62	Speed limit (SCSMX) automatically limited	
40	E-WRN	63	Position reference / velocity or acceleration standardization outside value range	
40	E-WRN	64	Power failure detected	
40	E-WRN	101	Encoder wire break detected (offline), no encoder connected	
40	E-WRN	179	Overflow of error counter in CAN controller	

Note:

1 = If this error is repeated please contact your local Service Partner
2 = See description of field bus (user manual)
Table A. 4 Error messages

LUST

Resetting errors (after eliminating the cause)

Starting the drive after an error

Helpline

If you have any technical queries about project planning or commissioning of the drive device, please contact our Helpline.

You can reach us:
Mon.-Thur.: 8 a.m. - 4.30 p.m. Tel. +49 6441/966-180
Fri.: $\quad 8$ a.m. -4 p.m. \quad Tel. +49 6441/966-180
E-mail: helpline@lust-tec.de
Fax: $\quad+49$ 6441/966-137

Service repairs

If you need further assistance, our specialists at the LUST Service Center will be glad to help.

You can reach us:
Mon.-Thur.: 8 a.m. - 4.30 p.m. Tel. +49 6441/966-171
Fri.: $\quad 8$ a.m. -4 p.m. \quad Tel. +49 6441/966-171
E-mail: service@lust-tec.de
Fax: \quad +49 6441/966-211

Resetting errors with reaction number 1 to 4:

- In control via terminals:
rising edge at input ENPO (Attention: control is shut off!) or:
with input Ixxx, to which the function Flxxx = RSERR (Reset Error) is assigned.
stop/return key on KeyPad for approx. 3 seconds
- In control via DriveManager:
click on "Reset error" button.
- In control via field bus:
set "Reset error" bit in bus control word.
- Cancel start signal and reapply it.
- With programmed auto-start function:
- In error reactions 1 and 2 the drive automatically restarts when the error is reset.
- In error reactions 3 and 4 the drive does not restart until the start signal has been withdrawn and re-sent.

Appendix B Troubleshooting

Errors in power switching

Resetting errors with reaction number 5:

Errors with reaction number 5 are serious device errors. They can only be reset by switching all supply voltages (mains, possibly 24V) off and back on again.

Error	Cause	Remedy
Power on. Servocontroller shows no reaction (LEDs off).	If switching is too frequent, the device protects itself by means of high-resistance isolation from the system.	After a rest phase of a few minutes the device is ready to start once again.

User errors in KeyPad operation

Error	Cause	Remedy
ATT1	Parameter cannot be changed at current user level or is not editable.	Select user level 1-MODE higher.
ATT2	Motor must not be controlled via the CTRL menu.	Cancel start signal from a different control location.
ATT3	Motor must not be controlled via the CTRL menu because of error state.	Reset error.
ATT4	New parameter value impermissible	Change value.
ATT5	New parameter value too high	Reduce value.
ATT6	New parameter value too low	Increase value.
ATT7	Card must not be read in current state.	Reset start signal.
ERROR	Invalid password	Enter correct password.

Table A. 5 KEYPAD user errors

User errors in SmartCard operation

Error	Meaning	Remedy
ERR91	SMARTCARD write- protected	
ERR92	Error in plausibility check	
ERR93	SMARTCARD not readable, wrong servocontroller type	
ERR94	SMARTCARD not readable, parameter not compatible	Use different
ERR96	Connection to SmARTCARD broken	

Table A. 6 SMARTCARD errors

Note: KEYPAD user errors can be reset with Start/Enter. SmARTCARD user errors can be reset with Stop/Return.

LUST

Appendix C Index

A
Acceleration resolution 4-152
Accuracy and time response 4-77
Activate or deactivate override 4-126
Actual values 5-92
Adopt reference point 4-125
Air humidity, relative 2-10
Ambient conditions 2-10
Analog inputs 5-4
Application data set Adapting 3-20
Areas of application of the CDD3000 4-74
Automatic correction of track signal 5-73
Automatic mode 4-75
Automatic start 5-14
Autostart 5-14
Axle status 4-141
B
Backlash $4-11,4-15,4-19,5-5$
Block diagram of control structure 4-14
Brake types 5-33
Bus systems 5-99
C
Calculation 4-151
Calculation aids 4-150
Cam gear 5-116
CANLust 5-101
CANopen 5-103
CARD menu 3-13
CDD3000 inputs and outputs 3-19
CDD3000 reference and actual values 3-18
CDD3000 status 3-17
Change acceleration mode 4-126
Changing motor in the DriveManager 5-67
Commissioning 3-20
Conditional step commands 4-114
Configuration options, ISAO / ISA1 5-5
Control mode / reference transfer 5-102
Control structure 4-14, 5-50
D
Danger (symbols) 1-8
Delete program 4-100
Device and terminal view 2-2
Device data 5-94
Device status 3-17
Diagnosis 5-97
Digital inputs 5-10
Digital inputs, user module UM8140 5-21
Digital outputs, user module UM8140 5-46
E
Electronic gearing 4-5
Emergency off system 1-10
Emergency stop 3-17, 4-21
Encoder 4-33
Encoder configuration 5-72
Encoder lines 5-106
Encoder setup 5-68
Encoder simulation 5-105
Encoder simulation connection and signal description 5-107
Encoder types 5-74
Encoder, optical, e.g. 4-153
Error messages 5-97, A-3
Error reaction A-2
Errors in power switching A-8

LUST

F
Field bus 5-96
Filter time constants, analog inputs 5-6
Filtering 5-4
Find commutation 5-79
First commissioning 4-3
First commissioning, example 4-144
Fixed speeds 4-27
Flag 3-15, 4-93
Flags event table 4-95
Flux Control
$\pm 10 \mathrm{~V}$ reference input 4-18
external position control 4-13
Fixed speeds 4-24
Position control 5-51
Pulse input 4-31
Reference and control via field bus 4-39
Functions/options of the analog inputs 5-7
G
GPOC 5-73
H
Hall sender 2-2, 5-75, 5-80
Helpline A-7
Holding brake 5-24, 5-32, 5-42
Homing mode 4-75
How to use this Manual 0-1
HTL master encoder 5-111
I
iMotion 4-72
incremental encoder signals 5-110
Incremental encoders 4-31, 5-73
Indexing table positioning 4-6
Indexing table setting 4-78
Infinite moving 4-130
Contents 1-1
Input status 4-141
Inputs 5-3
J
J erk limitation with smoothing time J TIME 4-21
Jog mode 4-101
L
Layout of a positioning system 4-73
LEDs A-2
Limit switches, hardware 5-17
Limit switches, software 4-91
Limit values 5-59
Linear drive 4-74
Linear motors 5-90
Lines per revolution 5-72
Loop control 5-48
Low Voltage Directive 1-9
M
Machinery Directive 1-9
Manual mode 4-75
Manual mode / J og mode 4-101
Master encoder 5-109
Measures for your safety 1-7
Motor and encoder 5-65
Motor setup 5-66
Multi-turn encoder 2-2, 4-75
0
Optical encoder 5-65, 5-77
Option modules 5-95
Outputs 5-24
Overlapping time 5-34
Overview of functions, positioning control 4-73
Overview of parameters A-1

LUST

P
Parameter Editor 3-8
Pictograms 0-2
Position resolution 4-77
Positioning 4-102
free programmable 4-6, 4-72
Reference, control via field bus 4-43
with fixed positions 4-55
Positioning controller CDD3000 4-73
Positioning sets 4-58
Positioning with or without program resumption 4-128
Positioning with resumption 4-128, 4-133
Positioning without resumption 4-129, 4-134
Possible modules 5-95
Power stage 5-59
Pre-control 5-41, 5-55
Preset solutions 4-1
Procedure
Commissioning 3-20
Process data 4-96
Process program 4-98
Profibus 5-100
Program Editor 4-98
Program examples 4-144
Program selection coding 4-92
Properties of the CDD3000 4-73
Protection 2-10
Pulse direction signals 5-110
Q
Quick stop 4-21, 4-95
R
Read from/write to SmartCard 3-13
Reference window 5-62
Relative positioning 4-131
Repairs 1-9
Reset error 5-97
Resolver excitation 5-88
Responsibility 1-10
S
Safety 1-7
Saving
Setting with KeyPad 3-16
Settings in file 3-15
Settings in the device 3-14
Saving settings 3-14
Selection of preset solutions in the
DriveManager 4-3
Sequence program 4-142
Service repairs A-7
Servo drive CDD3000 2-1
Servocontroller specification 2-10
Set and start timer 4-126
Set commands 4-120
Set digital output 4-120
Set field parameter 4-125
Set logical flag 4-121
Set numerator 4-124
Set parameter 4-125
Set table position 4-124
Set variable 4-122
Setting
Temperature monitoring 5-69
Settings of the CDD3000 digital outputs 5-26
Single-turn 5-72
Slots 5-95
Smoothing 4-112, A-12
Specification of control connections 2-11
Specification UM-8140 2-13
Speed threshold 5-43
Standardization of the analog inputs 5-7
Standardization tab 4-78
Standards 1-9
Standstill window 5-62
Status of a timer 4-118
Strength, mechanical 2-10
Submodes of the position controller 4-75
Subroutines 4-114
Switch-on 5-14
Synchronism 4-130

LUST

TTab
Acceleration profile 4-50
Analog inputs 5-4
CANLust 5-101
CANopen 5-103
Control 5-51
Control - Extended 5-53
Device 5-94
Digital inputs 5-10
Digital outputs 5-25
Digital Outputs UM8I40 5-46
driving profile 4-44
Encoder simulation 5-105
Field bus 5-96
Fixed speeds 4-26
Flag 4-93
Homing mode 4-47
Jog mode 4-49
Limit switch 4-64
Limit values 5-60
Master encoder 4-33, 5-109
Motor 5-66
Motor protection 5-68
Position table 4-56
Power stage 5-52
Profibus 5-100
Program selection 5-17
Reference 4-10, 4-15
Slots 5-95
Speed profile 4-20, 4-25, 4-35
Standardization 4-45, 4-58
Temperatures 5-93
Tolerances 5-61
Virtual Inputs 5-23
Virtual Outputs 5-47
Warnings/Errors 5-97
Target position 4-6, 4-58
Temperature range 2-10
Temperatures 5-93
Terminal expansion UM8140 4-67
Terminal view 2-2
Time response 4-76
Tolerances 5-61
Torque control 4-7, 4-10
Torque scaling 5-6

Appendix C Index

Torque threshold 5-44
Touch protection 2-10
Touchprobe commands 4-136
Track signal correction 5-72
Tracking error 5-63
Transmission ratio 4-34, 5-109, A-14
Travel optimized positioning of an indexing table 4-133
Travel resolution 4-151
Troubleshooting A-1
TTL encoder 5-74
U
Unconditional step commands 4-114
User control structure 3-1
User errors
KeyPad operation A-8
SmartCard operation A-9
User screen
Actual values 5-92
Bus systems 5-99
Encoder/Encoder simulation 5-104
Inputs 5-3
Limit values and tolerances 5-59
Loop control 5-48
Motor and encoder setup 5-65
Outputs 5-24
V
Velocity resolution 4-151
Virtual (digital) inputs 5-23
Virtual (digital) outputs 5-47
w
Wait commands 4-141
Waiting time 4-141
Z
Zero pulse 4-88, 5-106

LUST

Lust Antriebstechnik GmbH

Gewerbestrasse 5-9 • 35633 Lahnau • Germany Tel. +49 (0) 6441 / 9 66-0 • Fax +49 (0) 6441 / 9 66-137 info@lust-tec.de•www.lust-tec.de

Heinrich-Hertz-Str. 18 • 59423 Unna • Germany
Tel. +49 (0) 2303 / 77 9-0 •Fax +49 (0) 2303 / 77 9-3 97 info@lust-tec.de•www.lust-tec.de

Id.-Nr.: 0931.22B.2-00 • 02/2007
Technische Änderungen vorbehalten.

